首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14507篇
  免费   1710篇
  国内免费   6415篇
  2024年   139篇
  2023年   579篇
  2022年   589篇
  2021年   715篇
  2020年   854篇
  2019年   1035篇
  2018年   876篇
  2017年   890篇
  2016年   851篇
  2015年   835篇
  2014年   859篇
  2013年   1153篇
  2012年   848篇
  2011年   848篇
  2010年   693篇
  2009年   938篇
  2008年   812篇
  2007年   948篇
  2006年   858篇
  2005年   807篇
  2004年   706篇
  2003年   668篇
  2002年   551篇
  2001年   473篇
  2000年   469篇
  1999年   447篇
  1998年   348篇
  1997年   304篇
  1996年   310篇
  1995年   277篇
  1994年   253篇
  1993年   219篇
  1992年   218篇
  1991年   180篇
  1990年   172篇
  1989年   156篇
  1988年   113篇
  1987年   97篇
  1986年   76篇
  1985年   70篇
  1984年   69篇
  1983年   29篇
  1982年   79篇
  1981年   54篇
  1980年   47篇
  1979年   40篇
  1978年   13篇
  1977年   14篇
  1974年   13篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 82 毫秒
261.
The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg−1 day−1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0–0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2O (0.98 ± 0.44 μg N kg−1 day−1, 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.  相似文献   
262.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
263.
When compared to virgin land (forest and grassland), croplands store significantly lower amounts of organic carbon (OC), mainly as a result of soil tillage, and decreased plant inputs to the soil over the whole year. Doubts have been expressed over how much reduced and zero tillage agriculture can increase OC in soils when the whole soil profile is considered. Consequently, cover-crops that are grown in-between crops instead of leaving soils bare appear as the “last man standing” in our quest to enhance cropland OC stocks. Despite the claim by numerous meta-analyses of a mean carbon sequestration rate by cover crops to be as high as 0.32 ± 0.08 ton C ha−1 year−1, the present analysis showed that all of the 37 existing field studies worldwide only sampled to a depth of 30 cm or less and did not compare treatments on the basis of equivalent soil mass. Thirteen studies presented information on OC content only and not on OC stocks, had inappropriate controls (n = 14), had durations of 3 years or lower (n = 5), considered only one to two data points per treatment (n = 4), or used cover crops as cash crops (i.e., grown longer that in-between two crops) instead of catch crops (n = 2), which in all cases constitutes shortcomings. Of the remaining six trials, four showed non-significant trends, one study displayed a negative impact of cover crops, and one study displayed a positive impact, resulting in a mean OC storage of 0.03 ton ha−1 year−1. Models and policies should urgently adapt to such new figure. Finally, more is to be done not only to improve the design of cover-crop studies for reaching sound conclusions but also to understand the underlying reasons of the low efficiency of cover crops for improved carbon sequestration into soils, with possible strategies being suggested.  相似文献   
264.
陆生盐土植物在生长过程中吸收积累了大量的Cl和Na;从海向陆随着土壤和植被的生态演替,植物中Cl和Na的浓度逐渐降低;N与Cl、Na有相似的水平分布规律;植物种类是影响元素吸收积累的主要因素。在盐地碱蓬中N、P、K、Ca、Mg、Na、Cl、Mn和Zn的含量均是生长前期较高,随着其生长老化逐渐降低,大穗结缕草、白茅与盐地碱蓬相比,Ca的含量前期低后期高,Na、Mn、Cu和Zn的季节变化不明显。参加盐地碱蓬系统生物循环的元素中,Cl和Na的比例最大,在大穗结缕草和白茅生态系统中比例较小;由于白茅被收割利用,一些元素从此生态系统中流失。  相似文献   
265.
为探究了哥王Wikstroemiaindica的叶功能性状特征及其影响因素,在海岛植被调查的基础上对了哥王叶片进行取样并测定其功能性状指标,利用变异系数法和Pearson相关性分析探讨叶功能性状之间的差异与联系,运用冗余分析研究了哥王叶功能性状对土壤因子的响应。结果表明,了哥王的叶功能性状变异系数介于9.76%~23.73%,其中叶体积变异幅度最大(23.73%),叶干物质含量变异幅度最小(9.76%),整体上了哥王叶功能性状保持相对稳定。了哥王各项叶功能性状之间具有一定的相关性,联系较密切。了哥王叶功能性状主要受土壤中有机质、全氮、碱解氮的影响,土壤中有机质、全氮、碱解氮的含量与比叶面积呈正比,与叶厚度、叶体积成反比。了哥王的叶片可以通过一定的性状变异和组合来适应外部环境的变化,以较好地适应海岛恶劣的环境。该研究结果可为了哥王野生种质资源的保护、利用以及人工栽培提供参考。  相似文献   
266.
桑白蚧恩蚜小蜂Encarsia(=Prospaltella)berlesel(Howard)是寄生桑白蚧Pseudaulacaspls pentagona(Targioni-Tozzctti)的重要寄生蜂,许多国家进行了引进移植,对控制桑白蚧的为害取得明显的成效.本记述了桑白蚧恩蚜小蜂形态特征的鉴别。以及各国引进利用的概况.并讨论了利用寄生蜂防治桑白蚧的重要性.  相似文献   
267.
Plant-associated microbiomes can improve plant fitness by ameliorating environmental stress, providing a promising avenue for improving outplantings during restoration. However, the effects of water management on these microbial communities and their cascading effects on primary producers are unresolved for many imperiled ecosystems. One such habitat, Everglades tree islands, has declined by 54% in some areas, releasing excess nutrients into surrounding wetlands and exacerbating nutrient pollution. We conducted a factorial experiment, manipulating the soil microbiome and hydrological regime experienced by a tree island native, Ficus aurea, to determine how microbiomes impact growth under two hydrological management plans. All plants were watered to simulate natural precipitation, but plants in the “unconstrained” management treatment were allowed to accumulate water above the soil surface, while the “constrained” treatment had a reduced stage to avoid soil submersion. We found significant effects of the microbiomes on overall plant performance and aboveground versus belowground investment; however, these effects depended on hydrological treatment. For instance, microbiomes increased investment in roots relative to aboveground tissues, but these effects were 142% stronger in the constrained compared to unconstrained water regime. Changes in hydrology also resulted in changes in the prokaryotic community composition, including a >20 log2fold increase in the relative abundance of Rhizobiaceae, and hydrology-shifted microbial composition was linked to changes in plant performance. Our results suggest that differences in hydrological management can have important effects on microbial communities, including taxa often involved in nitrogen cycling, which can in turn impact plant performance.  相似文献   
268.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species.  相似文献   
269.
Soils contain biotic and abiotic legacies of previous conditions that may influence plant community biomass and associated aboveground biodiversity. However, little is known about the relative strengths and interactions of the various belowground legacies on aboveground plant–insect interactions. We used an outdoor mesocosm experiment to investigate the belowground legacy effects of range-expanding versus native plants, extreme drought and their interactions on plants, aphids and pollinators. We show that plant biomass was influenced more strongly by the previous plant community than by the previous summer drought. Plant communities consisted of four congeneric pairs of natives and range expanders, and their responses were not unanimous. Legacy effects affected the abundance of aphids more strongly than pollinators. We conclude that legacies can be contained as soil ‘memories’ that influence aboveground plant community interactions in the next growing season. These soil-borne ‘memories’ can be altered by climate warming-induced plant range shifts and extreme drought.  相似文献   
270.
Our understanding of the community assembly processes acting on non-indigenous species (NIS), as well as the relationship with native species is limited, especially in marine ecosystems. To overcome this knowledge gap we here develop a trait-based approach based on the functional distinctiveness metric to assess niche overlap between NIS and native species, using high-resolution data on benthic invertebrate communities in the Baltic Sea. Our results show that NIS retain a certain degree of similarity with native species, but display one or a few singular unique traits (e.g., bioturbation ability). Furthermore, we demonstrate that community assembly processes, including both environmental filtering and limiting similarity affect NIS establishment, but that their effects may be highly context dependent, as illustrated by pronounced spatial patterns in distinctiveness. Finally, our trait-based approach provides a generic framework applicable to other areas and organisms, to better understand and address biological invasions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号