首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   23篇
  国内免费   12篇
  2023年   9篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   11篇
  2014年   7篇
  2013年   18篇
  2012年   8篇
  2011年   10篇
  2010年   3篇
  2009年   9篇
  2008年   12篇
  2007年   10篇
  2006年   3篇
  2005年   6篇
  2004年   9篇
  2003年   12篇
  2002年   11篇
  2001年   4篇
  2000年   8篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   3篇
  1958年   1篇
排序方式: 共有231条查询结果,搜索用时 31 毫秒
21.
The copper membrane monooxygenases (CuMMOs) are an important group of enzymes in environmental science and biotechnology. Areas of relevance include the development of green chemistry for sustainable exploitation of methane (CH4) reserves, remediation of chlorinated hydrocarbon contamination and monitoring human impact in the biogeochemical cycles of CH4 and nitrogen. Challenges for all these applications are that many aspects of the ecology, physiology and structure–function relationships in the CuMMOs are inadequately understood. Here, we describe genetic and physiological characterization of a novel member of the CuMMO family that has an unusual physiological substrate range (C2–C4 alkanes) and a distinctive bacterial host (Mycobacterium). The Mycobacterial CuMMO genes (designated hmoCAB) were amenable to heterologous expression in M. smegmatis—this is the first example of recombinant expression of a complete and highly active CuMMO enzyme. The apparent specific activity of recombinant cells containing hmoCAB ranged from 2 to 3 nmol min–1 per mg protein on ethane, propane and butane as substrates, and the recombinants could also attack ethene, cis-dichloroethene and 1,2-dichloroethane. No detectable activity of recombinants or wild-type strains was seen with methane. The specific inhibitor allylthiourea strongly inhibited growth of wild-type cells on C2–C4 alkanes, and omission of copper from the medium had a similar effect, confirming the physiological role of the CuMMO for growth on alkanes. The hydrocarbon monooxygenase provides a new model for studying this important enzyme family, and the recombinant expression system will enable biochemical and molecular biological experiments (for example, site-directed mutagenesis) that were previously not possible.  相似文献   
22.
Most microorganisms remain uncultivated, and typically their ecological roles must be inferred from diversity and genomic studies. To directly measure functional roles of uncultivated microbes, we developed Chip-stable isotope probing (SIP), a high-sensitivity, high-throughput SIP method performed on a phylogenetic microarray (chip). This approach consists of microbial community incubations with isotopically labeled substrates, hybridization of the extracted community rRNA to a microarray and measurement of isotope incorporation—and therefore substrate use—by secondary ion mass spectrometer imaging (NanoSIMS). Laboratory experiments demonstrated that Chip-SIP can detect isotopic enrichment of 0.5 atom % 13C and 0.1 atom % 15N, thus permitting experiments with short incubation times and low substrate concentrations. We applied Chip-SIP analysis to a natural estuarine community and quantified amino acid, nucleic acid or fatty acid incorporation by 81 distinct microbial taxa, thus demonstrating that resource partitioning occurs with relatively simple organic substrates. The Chip-SIP approach expands the repertoire of stable isotope-enabled methods available to microbial ecologists and provides a means to test genomics-generated hypotheses about biogeochemical function in any natural environment.  相似文献   
23.
The Florida Everglades is extremely oligotrophic and sensitive to small increases in phosphorus (P) concentrations. P enrichment is one of the dominant anthropogenic impacts on the ecosystem and is therefore a main focus of restoration efforts. In this review, we synthesize research on P biogeochemistry and the impact of P enrichment on ecosystem structure and function in the Florida Everglades. There are clear patterns of increased P concentrations and altered structure and processes along nutrient-enrichment gradients in the water, periphyton, soils, macrophytes, and consumers. Periphyton, an assemblage of algae, bacteria, and associated microfauna, is abundant and has a large influence on phosphorus cycling in the Everglades. The oligotrophic Everglades is P-starved, has lower P concentrations and higher nitrogen–phosphorus (N:P) ratios, and has oxidized to only slightly reduced soil profiles compared to other freshwater wetland ecosystems. Possible general causes and indications of P limitation in the Everglades and other wetlands include geology, hydrology, and dominance of oxidative microbial nutrient cycling. The Everglades may be unique with respect to P biogeochemistry because of the multiple causes of P limitation and the resulting high degree of limitation. Received 23 August 2000; Accepted 23 March 2001.  相似文献   
24.
Fluxes and concentrations of carbon dioxide and 13CO2 provide information about ecosystem physiological processes and their response to environmental variation. The biophysical model, CANOAK, was adapted to compute concentration profiles and fluxes of 13CO2 within and above a temperate deciduous forest (Walker Branch Watershed, Tennessee, USA). Modifications to the model are described and the ability of the new model (CANISOTOPE) to simulate concentration profiles of 13CO2, its flux density across the canopy–atmosphere interface and leaf‐level photosynthetic discrimination against 13CO2 is demonstrated by comparison with field measurements. The model was used to investigate several aspects of carbon isotope exchange between a forest ecosystem and the atmosphere. During the 1998 growing season, the mean photosynthetic discrimination against 13CO2, by the deciduous forest canopy (Δcanopy), was computed to be 22·4‰, but it varied between 18 and 27‰. On a diurnal basis, the greatest discrimination occurred during the early morning and late afternoon. On a seasonal time scale, the greatest diurnal range in Δcanopy occurred early and late in the growing season. Diurnal and seasonal variations in Δcanopy resulted from a strong dependence of Δcanopy on photosynthetically active radiation and vapour pressure deficit of air. Model calculations also revealed that the relationship between canopy‐scale water use efficiency (CO2 assimilation/transpiration) and Δcanopy was positive due to complex feedbacks among fluxes, leaf temperature and vapour pressure deficit, a finding that is counter to what is predicted for leaves exposed to well‐mixed environments.  相似文献   
25.
Species-specific paleotemperature equations were used to reconstruct a record of temperature from foraminiferal δ18O values over the last 25 kyr in the Southern California Bight. The equations yield similar temperatures for the δ18O values of Globigerina bulloides and Neogloboquadrina pachyderma. In contrast, applying a single paleotemperature equation to G. bulloides and N. pachyderma δ18O yields different temperatures, which has been used to suggest that these species record the surface-to-thermocline temperature gradient. In Santa Barbara Basin, an isotopically distinct morphotype of G. bulloides dominates during glacial intervals and yields temperatures that appear too cold when using a paleotemperature equation calibrated for the morphotype common today. When a more appropriate paleotemperature equation is used for glacial G. bulloides, we obtain more realistic glacial temperatures. Glacial–interglacial temperature differences (G–I ΔT) calculated in the present study indicate significant cooling (8–10°C) throughout the Southern California Bight during the last glacial maximum (LGM). The magnitude of glacial cooling varies from 8°C near the middle of the Southern California Bight (Tanner Basin and San Nicolas Basin) to 9°C in the north (Santa Barbara Basin) and 9.5–10°C in the south (Velero Basin and No Name Basin). Our temperature calculations agree well with previous estimates based on the modern analog technique. In contrast, studies using N. pachyderma coiling ratios, Uk′37 indices, and transfer functions estimate considerably warmer LGM temperatures and smaller G–I ΔT.  相似文献   
26.
A new model, CCBATCH, comprehensively couples microbially catalyzed reactions to aqueous geochemistry. The effect of aqueous speciation on biodegradation reactions and the effect of biological reactions on the concentration of chemical species (e.g. H2CO3, NH 4 + , O2) are explicitly included in CCBATCH, allowing systematic investigation of kinetically controlled biological reactions. Bulk-phase chemical speciation reactions including acid/base and complexation are modeled as thermodynamically controlled, while biological reactions are modeled as kinetically controlled. A dual-Monod kinetic formulation for biological degradation reactions is coupled with stoichiometry for the degradation reaction to predict the rate of change of all biological and chemical species affected by the biological reactions. The capability of CCBATCH to capture pH and speciation effects on biological reactions is demonstrated by a series of modeling examples for the citrate/Fe(III) system. pH controls the concentration of potentially biologically available forms of citrate. When the percentage of the degradable substrate is low due to complexation or acid/base speciation, degradation rates may be slow despite high concentrations of substrate Complexation reactions that sequester substratein non-degradable forms may prevent degradation or stopdegradation reactions prior to complete substrate utilization. The capability of CCBATCH to couple aqueous speciation changes to biodegradation reaction kinetics and stoichiometry allows prediction of these key behaviors in mixed metal/chelate systems.  相似文献   
27.
Changes in regional climate in the Rocky Mountains over the next 100 years are expected to have significant effects on biogeochemical cycles and hydrological processes. In particular, decreased discharge and lower stream depth during summer when ultraviolet radiation (UVR) is the highest combined with greater photo-oxidation of dissolved organic materials (DOM) will significantly increase exposure of benthic communities to UVR. Communities in many Rocky Mountain streams are simultaneously exposed to elevated metals from abandoned mines, the toxicity and bioavailability of which are also determined by DOM. We integrated field surveys of 19 streams (21 sites) along a gradient of metal contamination with microcosm and field experiments conducted in Colorado, USA, and New Zealand to investigate the influence of DOM on bioavailability of heavy metals and exposure of benthic communities to UVR. Spatial and seasonal variation in DOM were closely related to stream discharge and significantly influenced heavy metal uptake in benthic organisms. Qualitative and quantitative changes in DOM resulting from exposure to sunlight increased UV-B (290–320 nm) penetration and toxicity of heavy metals. Results of microcosm experiments showed that benthic communities from a metal-polluted stream were tolerant of metals, but were more sensitive to UV-B than communities from a reference stream. We speculate that the greater sensitivity of these communities to UV-B resulted from costs associated with metal tolerance. Exclusion of UVR from 12 separate Colorado streams and from outdoor stream microcosms in New Zealand increased the abundance of benthic organisms (mayflies, stoneflies, and caddisflies) by 18% and 54%, respectively. Our findings demonstrate the importance of considering changes in regional climate and UV-B exposure when assessing the effects of local anthropogenic stressors.  相似文献   
28.
29.
The biogeochemical and stoichiometric signature of vegetation fire may influence post‐fire ecosystem characteristics and the evolution of plant ‘fire traits’. Phosphorus (P), a potentially limiting nutrient in many fire‐prone environments, might be particularly important in this context; however, the effects of fire on P cycling often vary widely. We conducted a global‐scale meta‐analysis using data from 174 soil studies and 39 litter studies, and found that fire led to significantly higher concentrations of soil mineral P as well as significantly lower soil and litter carbon:P and nitrogen:P ratios. These results demonstrate that fire has a P‐rich signature in the soil–plant system that varies with vegetation type. Further, they suggest that burning can ease P limitation and decouple the biogeochemical cycling of P, carbon and nitrogen. These effects resemble a transient reversion to an earlier stage of ecosystem development, and likely underpin at least some of fire's impacts on ecosystems and organisms.  相似文献   
30.
1. Vertical transport of nutrients in sedimenting faecal material is greatly reduced by coprophageous organisms. Unfortunately, nearly all work on faecal production, sedimentation and coprophagy has dealt with copepods in marine ecosystems. Here, we report the first evidence of coprophagy in freshwater zooplankton from oligotrophic and eutrophic lakes. We used 14C‐labelled algae and faecal material to estimate the rates of algal clearance and coprophagy. 2. Measured feeding rates per individual on faecal material were similar (Daphnia pulex, D. rosea, Leptodiaptomus tyrelli) or even higher (D. lumholtzi) than filtering rates on phytoplankton. This finding does not necessarily implicate active selection of faeces over algae because: (i) we did not use the same food concentrations for faeces and algae, and (ii) grazers of slightly different sizes were used in each test. 3. Weight‐specific clearance rates of L. tyrelli and Holopedium gibberum on faecal matter (0.084–0.089 mL μg?1 h?1) were higher than in the daphniids (0.026 mL μg?1 h?1). 4. The data indicate that coprophagy in freshwater ecosystems is an important mechanism of nutrient recycling, and this process should be taken into account when studying nutrient fluxes within lakes and reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号