Counterintelligence analysts use a technique called “walking back the cat'' to reveal “moles” or others passing on disinformation in which they compare what they now know as fact against what their agents or informers had told them to expect about certain persons or events. 1 Thus, “walking back the cat” is a perfect metaphor for working backwards; that is, retracing the complex development of an event and examining the “run up” to it in order to gain useful insights about how that event unfolded. Perhaps paleoanthropology can profit from such an approach. 相似文献
Sulfate contamination in ecosystems has been a serious problem. Among various technologies, bioelectrochemical systems (BESs) show the advantage of no-pollution and low-cost for removing sulfate. In order to further expound the biological process of sulfate removal in BESs, 454 pyrosequencing was applied to analyze the bacterial communities under different pH conditions. The bacterial community profiles were analyzed from three aspects: (a) the α-diversity and β-diversity of bacterial communities, (b) the distribution of bacterial phylotypes, and (c) the characterizations of dominant operational taxonomic units (OTUs). We demonstrated that the indexes of phylotype richness and phylogenetic diversity were positively correlated across the pH gradient in the BESs. Among the dominant OTUs, the OTUs which were highly similar to Desulfatirhabdium butyrativorans, Desulfovibrio marrakechensis and Desulfomicrobium sp. might participate in removing sulfate. Standing on genus level, Desulfomicrobium and Sulfuricurvum play conducing and adverse roles for sulfate removal in alkaline condition, respectively. Desulfovibrio contributed to removing sulfate in the neutral and acidic conditions, while Thiomonas mainly weakened the performance of sulfate removal in neutral pH condition. These results further clarified how pH condition directly affected the bacterial communities, which consequently affected the performance of sulfate pollutant treatment using BESs. 相似文献
In aqueous polyethylene glycol/dextran two-phase systems, the hydrophobicity, free volume, surface tension, and interfacial tension of the phases in equilibrium were measured as a function of pH and ionic strength. These parameters were found to change with pH, but the pattern and magnitude cannot explain the unusual partition of charged macromolecules, observed previously. The electrostatic potential difference was determined by a new experimental approach based on the measurement of the pH difference between the phases at equilibrium. In polyethylene glycol/dextran systems containing sodium chloride as ionized species, the electrostatic potential is not constant in the pH range 2 to 11. The partition behavior of charged macromolecules and its dependence on pH can be explained by the combined action of charge and phase potential. This conclusion was tested with poly-L-glutamate, which partitioned as predicted and in a pattern opposite to positively charged macro- molecules. (c) 1995 John Wiley & Sons, Inc. 相似文献
Current protocols for chondrocyte expansion and chondrogenic differentiation of stem cells fail to reduce phenotypic loss and to mitigate hypertrophic tendency. To this end, cell genetic manipulation is gaining pace as a means of generating cells with stable chondrocyte phenotype. Herein, we provide an overview of candidate genes that either induce cartilage regeneration or inhibit cartilage degeneration. We further discuss in vitro, ex vivo and in vivo viral transduction and non-viral transfection strategies for targeted cells (chondrocytes, mesenchymal stem cells, induced pluripotent stem cells and synovial cells), along with the most representative results obtained in pre-clinical models and in clinical trials. We highlight current challenges and associated risks that slowdown clinical acceptance and commercialisation of gene transfer technologies. 相似文献
Background: In dioecious plants, females and males associate differently with mycorrhizal fungi, but interactions with other rhizosphere organisms are less well studied.
Aims: We investigated the effect of plant sex on rhizosphere nematode communities associated with Corema album, a dioecious shrub occurring in coastal habitats.
Methods: Rhizosphere samples were collected from males and females in three populations (150 plants), during fruiting and flowering. Nematode communities were characterised and compared between plant sexes through statistical analyses of the abundance of trophic groups, plant parasitic nematode (PPN) genera and ecological indices.
Results: Free-living nematodes showed no statistically significant differences owing to plant sex. Conversely, PPN community composition was significantly different between plant sexes during fruiting but not flowering, suggesting that physiological requirements over the annual phenological cycle of the plant influence ecological interactions with the rhizosphere.
Of the 13 PPN genera identified, the ectoparasitic Criconema and Hemicriconemellawere more abundant in the rhizosphere of males during fruiting, whereas the endoparasitic Meloidogyne associated more frequently with females, suggesting that plant host suitability is related to PPN feeding strategy.
Conclusions: It appears that interactions of individuals of different sexes of C. album with the rhizosphere nematode community vary with phenological stage, especially for PPN. 相似文献
Introgression of spontaneous or induced mutations has been used to increase the levels and diversify the profile of antioxidants in many fruits including tomato. The high-pigment (hp) and old-gold (og) alleles exemplify this approach as attractive genetic resources suitable to inbred elite high-lycopene (HLY) tomato lines with improved color and nutritional attributes. Although several studies have been published on HLY tomatoes, a systematic analysis of the information on their agronomic performances, processing features, and functional quality is lacking, leaving room for the assumption of their poor competitiveness with conventional tomato cultivars and limiting their agricultural diffusion. Therefore, the aim of this study is to critically review the most important agronomic, horticultural, and functional traits of HLY tomatoes, as well as the advances in some emerging (pre)industrial applications. Field experiments performed in different countries showed that most available HLY lines are productive, vigorous, with excellent foliage cover and with morphologically acceptable fruit. Tomato yield of HLY genotypes ranged from ~30 to ~178 t/ha exceeding, in some trials, that of highly productive cultivars. Red-ripe fruits of most HLY lines showed commercially suitable soluble solids and titratable acidity, in addition to increased levels of lycopene (up to 440 mg/kg fw) and other bioactive phytochemicals (mainly flavonoids and vitamin C) compared to their near isogenic conventional counterparts. Innovative (pre)industrial uses of HLY tomato include the following: (1) production of HLY sauces, juices, and powders; (2) supercritical-CO2 extraction of lycopene containing oleoresins; and (3) preparation of lycopene rich micro- and nano-carriers with improved stability and specific tissue delivery. In turn, the use of these innovative high-quality ingredients in the formulation of lycopene fortified foods, cosmetic products, nutraceuticals, and pharmaceuticals has been proposed as the basis of a novel highly profitable tomato product chain. 相似文献
Turning wastewater directly into electricity is alluring, widespread use of microbial fuel cells (MFCs) to achieve this at industrial scale appears increasingly unlikely despite intense research efforts lasting over a decade. Such endeavors have not been futile, however, and game-changing discoveries have resulted from these well-intentioned, scientifically rigorous but ultimately frustrated attempts to resolve the Waste-Energy dichotomy. The appeal of MFCs is largely of conceptual elegance rather than financial competitiveness, based on the green ideal that bacteria can be turned into cost effective bio-batteries. This notion is founded on the solid principles of extracellular electron transfer (EET), where microbes use electrodes interchangeably with other electron acceptors to generate current as a direct proxy for microbial metabolism. We contend that a nuanced understanding of EET has been restricted by focusing on device performance when in fact this information could be more beneficially channeled into addressing analytical questions pertaining to the presence and activity of microorganisms across systems of environmental and medical import, i.e. bioelectroanalytics. We discuss here relevant literature detailing bioelectrochemical systems and contrast energy-centric conclusions with observations geared towards bioelectroanalytics. We explore the expanding possibilities of bioelectroanalytics enabled by advances in genetic techniques and rooted in the concept that microbial interactions with an electrode extend to more than just cells seeking alternative electron acceptors. Our intention is to highlight alternative directions in the field and encourage researchers to harness bioelectroanalytics to address wider societal problems, in addition to addressing climate change. 相似文献
A relativistic permeability model of cell osmotic response (Cryobiology 40:64-83; 41:366-367) is applied to a two-solute system with one impermeable solute. The use of the normalized water volume (w), and the amount of intracellular permeable solute (x), which is the product of the water volume and intracellular osmolality (y), as the main variables allowed us to obtain a homogeneous differential equation dx(Delta)/dw(Delta)=f(x(Delta)/w(Delta)), where w(Delta)=w-w(f), x(Delta)=x-x(f), and f refers to the final (equilibrium) values. The solution of this equation is an explicit function, w(Delta)=g(x(Delta)), which is given in the text. This approach allows us to obtain an analytical (exact) expression of the water volume at the moment of the maximum excursion (water extremum w(m)). Results are compared with numeration of basic osmotic equations and with approximation given in (Cryobiology 40:64-83). Assumption that, dw/dt approximately 0 gives good approximations of the kinetics of water and permeable CPA after the point of maximum volume excursion (the slow phase of osmotic response). Practical aspects of the relativistic permeability approach are also discussed. 相似文献