首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3928篇
  免费   662篇
  国内免费   519篇
  2024年   14篇
  2023年   205篇
  2022年   153篇
  2021年   228篇
  2020年   274篇
  2019年   305篇
  2018年   266篇
  2017年   248篇
  2016年   245篇
  2015年   201篇
  2014年   223篇
  2013年   286篇
  2012年   213篇
  2011年   193篇
  2010年   168篇
  2009年   191篇
  2008年   185篇
  2007年   193篇
  2006年   178篇
  2005年   118篇
  2004年   111篇
  2003年   113篇
  2002年   133篇
  2001年   134篇
  2000年   91篇
  1999年   93篇
  1998年   89篇
  1997年   61篇
  1996年   53篇
  1995年   37篇
  1994年   30篇
  1993年   11篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1979年   4篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1972年   1篇
  1958年   3篇
排序方式: 共有5109条查询结果,搜索用时 15 毫秒
21.
Feldberger Haussee provides a classic example of eutrophication history of hardwater lakes in the Baltic Lake District (Germany) and of changes in their algal flora during the 20th century. The lake originally was regarded as slightly eutrophic. A process of drastic eutrophication from the 1950s until the end of the 1970s caused mass developments of blue-green and green algae. A restoration program was started in the 1980s to improve the water quality of the lake using both diversion of sewage outside the catchment area, and biomanipulation by altering the fish community. This restoration program led to positive changes in the lake ecosystem. Direct effects of biomanipulation resulted in an increase of herbivorous zooplankton, a decrease of phytoplankton biomass, and an increase of water transparency. The recovery of Feldberger Haussee also may have been indirectly enhanced by an increase in nutrient sedimentation as a consequence of intensified calcite precipitation, decrease in phosphorus remobilization due to a pH-decrease, increased NIP-ratio, and recolonization of the littoral zone by macrophytes. This paper concentrates on the long term development of the phytoplankton community as a response to changes in the food web structure as well as to alterations in the chemical environment of the algae. Both are reflected in four major stages passed by the algal assemblage between 1980 and 1994: (1) From 1980-summer 1985 dense green algal populations were found indicating similar conditions as in the 1970s during the period of maximum eutrophication. (2) A diverse phytoplankton community during summer 1985–1989 showed the first effects of a recovery. (3) From 1990–1992 the phytoplankton was characterized by ungrazeable filamentous blue-green algae first of all as a response to increased herbivory of zooplankton on edible species and to increasing N/P-ratios. (4) Finally, the algal species diversity increased in 1993 and 1994 whereas the phytoplankton biomass decreased showing the success of the combined restoration measures.  相似文献   
22.
Octopod (Octo) is a mutation of the moth Manduca sexta, which transforms the first abdominal segment (A1) in the anterior direction. Mutant animals are characterized by the appearance of homeotic thoracic-like legs on A1. We exploited this mutation to determine what rules might be used in specifying the fates of sensory neurons located on the body surface of larval Manduca. Mechanical stimulation of homeotic leg sensilla did not cause reflexive movements of the homeotic legs, but elicited responses similar to those observed following stimulation of ventral A1 body wall hairs. Intracellular recordings demonstrated that several of the motoneurons in the A1 ganglion received inputs from the homeotic sensory hairs. The responses of these motoneurons to stimulation of homeotic sensilla resembled their responses to stimulation of ventral body wall sensilla. Cobalt fills revealed that the mutation transformed the segmental projection pattern of only the sensory neurons located on the ventral surface of A1, resulting in a greater number with intersegmental projection patterns typical of sensory neurons found on the thoracic body wall. Many of the sensory neurons on the homeotic legs had intersegmental projection patterns typical of abdominal sensory neurons: an anteriorly directed projection terminating in the third thoracic ganglion (T3). Once this projection reached T3, however, it mimicked the projections of the thoracic leg sensory neurons. These results demonstrate that the same rules are not used in the establishment of the intersegmental and leg-specific projection patterns. Segmental identity influences the intersegmental projection pattern of the sensory neurons of Manduca, whereas the leg-specific projections are consistent with a role for positional information in determining their pattern. © 1995 John Wiley & Sons, Inc.  相似文献   
23.
Summary The composition of the ant community was assessed along standardized 100 m transects in annually flooded Varzea forest and in terra firme forests on sandy soil (Flanco forest) and on claytopped mesas (Planalto forest). Standardized samples were taken by unit-time hand collecting (day and night times), sweeping, beating, baiting and by Winkler sacks. A total of 156 species, representing 49 genera were found, of which 98, 88 and 55 were respectively found in the Planalto, Flanco and Varzea forests. Species lists are presented and the ant community composition and species richness are compared between the three forests. By considering the nesting and foraging habits of the various species, the differences in overall community composition are related to the forest type and susceptibility to inundation of the three forests which were surveyed.The data confirm the view that tropical rain forests support an extremely diverse ant fauna and comparisons with other forested areas suggest that ant species richness declines in subtropical and temperate rain forests. Although alpha diversity is high, species turnover between forests is lower than expected, suggesting that ant species richness in this forested region is not as great as is implied in some published estimates of global arthropod diversity.  相似文献   
24.
The soil fauna: the other last biotic frontier   总被引:4,自引:0,他引:4  
Different approaches to biodiversity yield global totals as small as 3 million or as large as 80 million species. Erwin's calculation and estimation leads to an estimate of ca 30 million species and relies on four assumptions of which one concerns the ratio between the number of canopy insects and those found elsewhere, especially in the soil. A short survey of the microarthropods living in coastal sand dunes and collected with a new flotation method yielded amazing results. In spite of the severity of the habitat (low organic matter content and extreme dryness), the density of microarthropods varied between 175 000 and 1 400 000 individuals per square metre, i.e., densities 3 to 10 times higher than densities usually observed in any other type of soil. A total of 31 species was recorded, most undescribed and smaller than 200 m. The consequences of these findings on the estimation of the number of species are discussed. It is suggested that the soil, including the deepest horizons and the rhizosphere, might constitute a huge reservoir for biodiversity.  相似文献   
25.
生态交错带(Ecotone)理论研究进展   总被引:36,自引:2,他引:34  
生态交错带(Ecotone)理论研究进展高洪文(东北师范大学草地研究所,长春130024)AdvancementofTbeoreticalResearchinEcotone.¥GaoHongwen(InstituteofGrasslandRe-sea...  相似文献   
26.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   
27.
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.  相似文献   
28.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
29.
SOS!濒临极限的生物多样性   总被引:6,自引:0,他引:6  
本文论述了生物多样性的价值、多样性丧失的严重性和后果,以及多样性保护与持续利用的对策。文中强调指出,生物界中的每片基因,每一个物种,每一类生态系统对人类的持久生存都是无价之宝,任何多样性的丧失都是不可逆、不可再生的,因而对人类的损失是难以估量的。然而目前由于人类剧烈的活动干扰如滥砍滥伐、滥捕滥猎、环境污染、火灾、垦荒等,生物多样性丧失的速率怵目惊心!若不赶快行动起来,人类赖以生存的生物多样性将所剩无几,人类生存的危机也将难以避免。从保护与利用及其协同发展出发,本文呼吁要大力开展生物多样性的研究和开发工作,目的一方面在于进一步加强生物多样性的基础调查和研究工作,另一方面在于使生物多样性资源更好地为人类造福。为减缓目前生物多样性所承受的压力及促进其恢复,本文建议对完全依赖野生生物资源的传统产业征收“资源更新税”;而对开发和利用生物多样性资源,不仅不影响野生资源,而且能替代它,或减缓其压力,或促进其恢复的高新技术产业,在税收上给予特别优惠。  相似文献   
30.
Machine grading is frequently required to prepare the terrain when building high-altitude ski slopes in the Alps. However, this kind of disturbance alters the natural environment, destroying the vegetation and hampering its reestablishment. Thus, specific restoration plans are necessary to encourage the recovery of vegetation, which is already affected by different natural constraints in this harsh environment. One of the main critical factors affecting plant growth in high-altitude areas is the lack of available nitrogen (N) in the soil. In this context, the addition of a slow-release N fertilizer was carried out in an experimental revegetated ski slope between 2,800 and 2,900 m above sea level in the western Italian Alps. Both vegetation and soil were monitored during a 5-year period in order to test the effectiveness of N addition on the restoration process. Even if effects on soil carbon and N contents were negligible, vegetation was remarkably affected by the fertilization, since the total vegetation cover and the species richness significantly increased. Against the expectations, there was a remarkable increase in spontaneous forbs, rather than in most of the sown graminoids, which slightly varied during the experimental period. Actually, graminoids responded in different ways, mostly increasing (likewise forbs), but the slight decrease of the dominant Festuca nigrescens (Chewing's Fescue) masked their spread. This study confirms the noteworthy role of N in high-altitude alpine soils and consequently its importance to improve the restoration process of degraded ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号