首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13352篇
  免费   1831篇
  国内免费   996篇
  16179篇
  2024年   55篇
  2023年   430篇
  2022年   374篇
  2021年   491篇
  2020年   722篇
  2019年   816篇
  2018年   692篇
  2017年   691篇
  2016年   638篇
  2015年   576篇
  2014年   657篇
  2013年   962篇
  2012年   614篇
  2011年   568篇
  2010年   550篇
  2009年   711篇
  2008年   739篇
  2007年   692篇
  2006年   641篇
  2005年   549篇
  2004年   485篇
  2003年   431篇
  2002年   425篇
  2001年   455篇
  2000年   376篇
  1999年   342篇
  1998年   302篇
  1997年   226篇
  1996年   171篇
  1995年   142篇
  1994年   158篇
  1993年   74篇
  1992年   73篇
  1991年   55篇
  1990年   66篇
  1989年   20篇
  1988年   34篇
  1987年   35篇
  1986年   26篇
  1985年   17篇
  1984年   27篇
  1983年   16篇
  1982年   16篇
  1981年   11篇
  1980年   9篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1972年   1篇
  1958年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
The upland mesic rainforests of eastern Australia have been described as a "mesothermal archipelago" where a chain of cool mountain "islands" arise from a warm "sea" of tropical and subtropical lowlands. An endemic freshwater crayfish belonging to the genus Euastacus is found on each of these mountain "islands." The Euastacus are particularly suitable for the study of evolution because each mountain harbors a unique species, there are many taxa present providing replication within the group and, most importantly, their distribution is linear, extending along a south-north axis. This group could have evolved by "simultaneous vicariance" where there was one vicariant separation event of a widespread ancestor, or by "south to north stepping stone dispersal" where there were long distance dispersal events from neighboring mountain islands, starting in the south and proceeding north in a dispersal-colonization wave. We used pairwise genetic distances between nearest geographic neighbors as a novel way to test the two hypotheses. If diversification was due to "south to north stepping stone dispersal," then pairwise genetic distances between nearest geographic neighbors should decrease progressively the farther north the taxon pairs are found, reflecting the decreasing periods of isolation. In this case there should be a negative correlation between the south to north rank order of nearest neighbors and pairwise genetic distances. A Spearman's correlation on 16S mtDNA pairwise genetic distances and geographic rank order was not significant, indicating there was no support for the south to north stepping stone dispersal hypothesis. If simultaneous vicariance was responsible for diversification then all nearest geographic neighbor taxon pairs should have similar genetic distances and, therefore, the variance in nearest neighbor distances should be zero, or close to it. To test if the observed variance was tending towards zero we developed a randomization test where nearest neighbor taxon pairs were assigned random genetic distances and the variances calculated. The observed variance lay in the < 0.05 range of the simulated variances, providing support for the simultaneous vicariance hypothesis. The data also suggest there was simultaneous vicariance of at least two ancestral Queensland lineages. The timing of this vicariant event was probably in the Pliocene, which is consistent with the divergence times reported for other Australian mesic rainforest restricted taxa.  相似文献   
72.
73.
74.
Primula allionii is endemic to a tiny area of the Maritime Alps and has one of the narrowest distribution ranges in this hotspot of biodiversity. Phylogeographical patterns in P. allionii were studied using plastid DNA markers and dominantly inherited markers (AFLP and ISSR) to verify any admixture between P. allionii and the sympatric P. marginata and to detect the phylogeographical history of the species. Morphometric measurements of flowers and admixture analysis support the hypothesis that hybridization occurs in nature. Species distribution models using two climate models (CCSM and MIROC) suggested a reduction in habitat suitability during cold periods. Phylogeographical analysis suggested an old allopatric divergence during the mid‐Pleistocene transition (about 0.8 Mya) without recolonization/contraction cycles. The Alps watershed does not act as a strong barrier between the two main areas of the distribution range, and moderate gene flow by pollen seems to create the admixture recorded among the stands. According to our results, the persistence of P. allionii throughout the Ice Age appears to be linked to the capacity of the Maritime Alps to provide a wide diversity of microhabitats consistent with the recent biogeographical pattern proposed for the Mediterranean Basin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 637–653.  相似文献   
75.
Genetic structure and relationship amongst the main goat populations in Sicily (Girgentana, Derivata di Siria, Maltese and Messinese) were analysed using information from 19 microsatellite markers genotyped on 173 individuals. A posterior Bayesian approach implemented in the program STRUCTURE revealed a hierarchical structure with two clusters at the first level (Girgentana vs. Messinese, Derivata di Siria and Maltese), explaining 4.8% of variation (amova ФST estimate). Seven clusters nested within these first two clusters (further differentiations of Girgentana, Derivata di Siria and Maltese), explaining 8.5% of variation (amova ФSC estimate). The analyses and methods applied in this study indicate their power to detect subtle population structure.  相似文献   
76.
Aim I analysed distributional and phylogenetic information on weevils (Coleoptera: Curculionidae) from the Falklands, and integrated it with molecular, palaeontological and geological information to infer a geobiotic scenario. Location Falkland Islands (Islas Malvinas). Methods The panbiogeographical analysis was based on data on 23 Falkland species and their related taxa from southern South America. For the cladistic biogeographical analysis I analysed six weevil taxa for which phylogenetic hypotheses are available (the generic groups Cylydrorhinus, Strangaliodes and Falklandius, and the genera Antarctobius, Germainiellus and Puranius). Results from this analysis were compared with previous regionalizations. Cenocrons (sets of taxa that share the same biogeographical history) were identified by considering temporal information provided by fossils and molecular clocks. Finally, a geobiotic scenario was proposed by integrating the available information. Results Six generalized tracks were detected: Maule–Valdivian forests, Magellanic forest, Magellanic moorland, Falkland Islands, Magellanic forest–Magellanic moorland, and Magellanic forest–Falkland Islands. A node was identified in the Magellanic forest, based on the overlap of two generalized tracks. A single general area cladogram was obtained, implying the following sequence: (Magellanic moorland (Maule–Valdivian forests (Magellanic forest, Falkland Islands))). The Falklands are classified here as a biogeographical province in the Austral realm, Andean region and Subantarctic subregion. Falkland weevils seem to belong to a single Subantarctic cenocron. The sequence of events deduced implies the following steps: development of the Subantarctic biota in southern South America, arrival of the Falkland crustal block from South Africa in the Early Cretaceous, geodispersal of the Subantarctic cenocron from southern South America to the Falklands during the Early Oligocene, vicariance of the Magellanic moorland, vicariance of the Maule–Valdivian forests, and final vicariance between the Magellanic forest and the Falkland Islands. Main conclusions The biotic components identified support the connection of the Falkland weevils with the Magellanic forest. Falkland weevils belong to a single cenocron, dated to at least the Early Oligocene, when geodispersal from southern South America may have occurred. An older African cenocron may have been replaced completely by the Subantarctic one when the proto‐Falklands made contact with the Patagonian continental shelf. A geobiotic scenario implying vicariance events related to sea‐level variations could explain the distributional patterns analysed herein.  相似文献   
77.
Aim Deep‐sea hydrothermal vents have now been reported along all active mid‐ocean ridges and back‐arc basins, but the boundaries of biogeographic entities remain questionable owing to methodological issues. Here we examine biogeographic patterns of the vent fauna along the East Pacific Rise (EPR) and determine the relative roles of regional and local factors on the distribution of biodiversity associated with mussel beds along a poorly explored zone, the southern EPR (SEPR). Location East Pacific Rise. Methods A species list of macrobenthic invertebrates along the EPR was compiled from the literature and supplemented with data recovered during the French research cruise BIOSPEEDO carried out in 2004 along the SEPR. Biogeographic patterns were assessed by combining the identification of morphological species with a molecular barcoding approach. A multivariate regression tree (MRT) analysis was performed to identify any geographic breaks, and an empirical distribution of species richness was compared with predictions provided by a mid‐domain effect model. Macrofaunal community structure associated with mussel beds along the SEPR was analysed in relation to environmental factors using cluster and canonical redundancy analyses. Results Sequencing of the cytochrome c oxidase subunit I gene revealed the occurrence of several cryptic species complexes along the EPR, with the equator separating the southern and northern clades. Furthermore, during the BIOSPEEDO cruise at least 10 still unnamed species were collected between 7°25′ S and 21°33′ S. The shift in community structure identified by MRT analysis was located south of 17°34′ S or south of 13°59′ S, depending on the data used, suggesting that the southern part of the SEPR (17°25′–21°33′ S) constitutes a biogeographic transition zone in the vent fauna along the EPR. At a regional scale, latitude combined with the type of venting was significantly correlated with the community structure associated with mussel beds. Main conclusions Together, the molecular data, in situ observations, and the distribution of species suggest that the high diversity of vent fauna species presently observed between 17°25′ S and 21°33′ S is probably a result of the overlap of several distinct biogeographic provinces. We argue that this area thus constitutes a biogeographic vent fauna transition zone along the EPR.  相似文献   
78.
Integrating phylogenetic data into macroecological studies of biodiversity patterns may complement the information provided by present‐day spatial patterns. In the present study, we used range map data for all Geonoma (Arecaceae) species to assess whether Geonoma species composition forms spatially coherent floristic clusters. We then evaluated the extent to which the spatial variation in species composition reflects present‐day environmental variation vs. nonenvironmental spatial effects, as expected if the pattern reflects historical biogeography. We also examined the degree of geographic structure in the Geonoma phylogeny. Finally, we used a dated phylogeny to assess whether species richness within the floristic clusters was constrained by a specific historical biogeographic driver, namely time‐for‐diversification. A cluster analysis identified six spatially coherent floristic clusters, four of which were used to reveal a significant geographic phylogenetic structure. Variation partitioning analysis showed that 56 percent of the variation in species composition could be explained by spatial variables alone, consistent with historical factors having played a major role in generating the Geonoma diversity pattern. To test for a time‐for‐diversification effect, we correlated four different species richness measures with the diversification time of the earliest large lineage that is characteristic of each cluster. In support of this hypothesis, we found that geographic areas with higher richness contained older radiations. We conclude that current geographic diversity patterns in Geonoma reflect the present‐day climate, but to a larger extent are related to nonenvironmental spatial constraints linked to colonization time, dispersal limitation, and geological history, followed by within‐area evolutionary diversification. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   
79.
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal‐limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号