首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   37篇
  国内免费   37篇
  2023年   7篇
  2022年   8篇
  2021年   6篇
  2020年   14篇
  2019年   20篇
  2018年   20篇
  2017年   18篇
  2016年   22篇
  2015年   24篇
  2014年   27篇
  2013年   64篇
  2012年   17篇
  2011年   30篇
  2010年   24篇
  2009年   35篇
  2008年   33篇
  2007年   26篇
  2006年   23篇
  2005年   20篇
  2004年   19篇
  2003年   13篇
  2002年   17篇
  2001年   19篇
  2000年   10篇
  1999年   8篇
  1998年   7篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   2篇
  1986年   6篇
  1985年   6篇
  1984年   17篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   4篇
排序方式: 共有670条查询结果,搜索用时 93 毫秒
41.
Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   
42.
Crude glycerin, a potential energy source for ruminant animals, has been evaluated, mainly, in diets with high starch content. However, a limit number of studies have evaluated the inclusion of crude glycerin in low starch diets. This study aimed to evaluate the effects of the association of crude glycerin with corn grain or citrus pulp on carcass traits and meat quality of Nellore bulls (n=30, 402±31 kg initial weight). The treatment consisted of: CON=control, without crude glycerin; CG10=10% of crude glycerin and corn grain; CG15=15% of crude glycerin and corn grain; CP10=10% of crude glycerin and citrus pulp; CP15=15% of crude glycerin and citrus pulp. The performance parameters and carcass traits were not affected by treatments (P>0.05). The inclusion of crude glycerin decreased yellow color intensity and increased fatty acids pentadecanoic and heptadecenoic in meat (P<0.05), without affecting neither the concentration of polyunsaturated fatty acids nor the relationship of saturated and unsaturated fatty acids. The association of crude glycerin with corn or citrus pulp has no adverse effects on carcass characteristics and meat quality.  相似文献   
43.
The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.  相似文献   
44.
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co‐utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol‐pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by‐product. It is expected that microbial oil production can be significantly improved through process optimization.  相似文献   
45.
对微生物法甘油转化成1,3-丙二醇过程中代谢规律及代谢控制的相关酶作以简述,并着重分析了丁酸梭菌发酵生产中乙酸、丁酸等副产物对细胞的抑制作用,对未来的研究发展方向进行了展望。  相似文献   
46.
47.
We report here the purification and the crystallization of the modular protein Grb2. The protein was expressed as a fusion with glutathione-S-transferase and purified by affinity chromatography on glutathione agarose. It was apparent from reverse phase chromatography that the purified protein was conformationally unstable. Instability was overcome by the addition of 100 mM arginine to the buffers. Because Grb2 appeared to be extremely sensitive to oxidation, crystallization experiments were performed with a dialysis button technique involving daily addition of fresh DTT to the reservoirs. The presence of 8 to 14% glycerol was necessary to obtain mono-crystals. These results are discussed in relation with the modular nature of Grb2. © 1996 Wiley-Liss, Inc.  相似文献   
48.
We reported herein an efficient, environmentally friendly synthesis of hydrazine carboxamides (6a–l) in a water-glycerol (6:4) solvent system using ultrasonic irradiation. Ultrasonicated reactions were found to be much faster and more productive than conventional synthesis. The prepared compounds (6a–l) were tested against nine panels of 60 cancer cell lines according to the National Cancer Institute (NCI US) protocol. N-(4-Chlorophenyl)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carboxamide (6b) was discovered to be promising anticancer agents with higher sensitivity against CCRF-CEM, HOP-92, UO-31, RMPI-8226, HL-60(TB), and MDA-MB-468 with percent growth inhibitions (%GIs) of 143.44, 33.46, 33.21, 33.09, 29.81, and 29.55 respectively. Compounds (6a–l) tested showed greater anticancer activity than Imatinib, except for compound 6k. Compounds 6b and 6c were found to be lethal on the CCRF-CEM leukaemia cell line, with %GIs of 143.44 and 108.91, respectively. Furthermore, molecular docking analysis was performed to investigate ligand binding affinity at the active site of epidermal growth factor (EGFR).  相似文献   
49.
We predict a structure of the glutamine amidotransferase subunit (hisH) of imidazole glycerol phosphate synthase (IGPS) which catalyzes the fifth step of the histidine biosynthesis in Escherichia coli. The model is constructed using an energy-based threading program augmented by a multiple sequence to structure profile analysis. In developing our model we identified a conserved core region within hisH and a variable domain which is the likely site of interaction with the synthase subunit (hisF) of IGPS. Information available from structural and functional genomics studies was used to improve the structure prediction, to discuss parallels between histidine biosynthesis and other amino acid and nucleotide metabolic pathways, and to better understand the protein-protein interactions between the hisH and hisF domains of IGPS. This work allows us to develop a preliminary model for the structure of the entire IGPS holoenzyme.  相似文献   
50.
Our Department of Plastic and Reconstructive Surgery has routinely been using amnion preserved in glycerol for the treatment of debrided II° burns. This treatment is almost pain free and requires fewer changes of dressings and fewer anaesthetics. It also prevents overgrowing granulation tissue and lessens scarring. Since 1910 amnion has been used as biological wound dressing. Its advantages such as reduced loss of protein and electrolytes, fluids and energy as well as reducing the risk of infection and accelerated regeneration of the epithelium have been well documented in medical literature. In order to more closely examine the question of possible changes to the micro structure of the amnion through preservation and rehydration as well as the interaction between transplanted tissue and recipient, we have carried out several light and electron microscopic studies. Results showed that neither the treatment with glycerol, nor the pretransplantation rehydration eliminates the monolayer of surface epithelium of the amnion. Its complex architecture remains intact during the preservation process and is therefore suitable as a matrix for the growth of keratinocytes and thereby the healing process. In clinical use we found amnion to be an excellent wound dressing as it allows proper control of fluid, has sufficient permeability for gases, has good thermal properties, is impervious to micro-organisms and is free from toxic material. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号