首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5579篇
  免费   592篇
  国内免费   1571篇
  2024年   39篇
  2023年   192篇
  2022年   250篇
  2021年   298篇
  2020年   248篇
  2019年   308篇
  2018年   283篇
  2017年   284篇
  2016年   334篇
  2015年   295篇
  2014年   414篇
  2013年   474篇
  2012年   322篇
  2011年   324篇
  2010年   237篇
  2009年   275篇
  2008年   293篇
  2007年   287篇
  2006年   287篇
  2005年   247篇
  2004年   206篇
  2003年   193篇
  2002年   168篇
  2001年   123篇
  2000年   128篇
  1999年   102篇
  1998年   102篇
  1997年   159篇
  1996年   71篇
  1995年   82篇
  1994年   49篇
  1993年   62篇
  1992年   57篇
  1991年   50篇
  1990年   46篇
  1989年   50篇
  1988年   31篇
  1987年   46篇
  1986年   45篇
  1985年   36篇
  1984年   39篇
  1983年   32篇
  1982年   35篇
  1981年   17篇
  1980年   25篇
  1979年   19篇
  1978年   16篇
  1977年   12篇
  1976年   16篇
  1975年   18篇
排序方式: 共有7742条查询结果,搜索用时 609 毫秒
991.
992.
Increasing frequency and intensity of drought extremes associated with global change are a key challenge for forest ecosystems. Consequently, the quantification of drought effects on tree growth as a measure of vitality is of highest concern from the perspectives of both science and management. To date, a multitude of drought indices have been used to accompany or replace primary climatic variables in the analysis of drought-related growth responses. However, it remains unclear how individual drought metrics compare to each other in terms of their ability to capture drought signals in tree growth.In our study, we employ a European multispecies tree ring network at the continental scale and a set of four commonly used drought indices (De Martonne Aridity Index, self-calibrating Palmer Drought Severity Index, Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index, the latter two on varying temporal scales) to derive species-specific growth responses to drought conditions. For nine common European tree species, we demonstrate spatio-temporal matches and mismatches of tree growth with drought indices subject to species, elevation and bioclimatic zone. Forests located in the temperate and Mediterranean climate were drought sensitive and tended to respond to short- and intermediate-term drought (<1 year). In continental climates, forests were comparably more drought resistant and responded to long-term drought. For the same species, stands were less drought sensitive at higher elevations compared to lower elevations. We provide detailed information on the month-wise performance of the four drought indices in different climate zones allowing users the selection of the most appropriate index according to their objective criteria. Our results show that species-specific differences in responses to multiple stressors result in complex, yet coherent patterns of tree growth.  相似文献   
993.
Coronary Artery Disease (CAD) is a major killer disease throughout the world. Dyslipidemia is a major contributor to the risk of CAD. Several dietary articles traditionally used in India and other South Asian countries reduced dyslipidemia. The present study was undertaken to evaluate the combined effect of Mung bean (Vigna radiata) and Elephant foot yam (Amorphophallus paeoniifolius) on serum lipids and atherogenic indices in albino rats and to compare it with a standard drug Cholestyramine. Thirty healthy albino rats of both sexes (150–200 g) were randomized to 5 groups of 6 animals each. The grouping were done based on the following criteria: Group I: Normal Control Group, Group II: (Standard Group): Cholestyramine resin 5 mg/kg bw, Group III: (Half Dose Group): Drug powder at 540 mg/kg bw, Group IV: (Effective Dose Group): Drug powder at 1080 mg/kg bw, and Group V: (Double Dose Group): Drug powder at 2160 mg/kg bw. Lipid profile was estimated at the beginning and after 30 days of treatment. The Effective and Double doses of the drug reduced Total cholesterol along with levels of Triglycerides, Low density lipoprotein and Very low density lipoprotein levels significantly (p < 0.01) along with a significant (p < 0.01) increase in high density lipoproteins (HDL) in rats. There was also significant (p < 0.01) improvement in atherogenic indices like Castelli Risk Index I, Non HDL C/HDL, Castelli risk Index II, TG/HDL, Atherogenic coefficient and Atherogenic Index of Plasma. The combination of powdered sprouted mung bean and yam powder have excellent lipid lowering potential.  相似文献   
994.
Climate projections from 20 downscaled global climate models (GCMs) were used with the 3‐PG model to predict the future productivity and water use of planted loblolly pine (Pinus taeda) growing across the southeastern United States. Predictions were made using Representative Concentration Pathways (RCP) 4.5 and 8.5. These represent scenarios in which total radiative forcing stabilizes before 2100 (RCP 4.5) or continues increasing throughout the century (RCP 8.5). Thirty‐six sites evenly distributed across the native range of the species were used in the analysis. These sites represent a range in current mean annual temperature (14.9–21.6°C) and precipitation (1,120–1,680 mm/year). The site index of each site, which is a measure of growth potential, was varied to represent different levels of management. The 3‐PG model predicted that aboveground biomass growth and net primary productivity will increase by 10%–40% in many parts of the region in the future. At cooler sites, the relative growth increase was greater than at warmer sites. By running the model with the baseline [CO2] or the anticipated elevated [CO2], the effect of CO2 on growth was separated from that of other climate factors. The growth increase at warmer sites was due almost entirely to elevated [CO2]. The growth increase at cooler sites was due to a combination of elevated [CO2] and increased air temperature. Low site index stands had a greater relative increase in growth under the climate change scenarios than those with a high site index. Water use increased in proportion to increases in leaf area and productivity but precipitation was still adequate, based on the downscaled GCM climate projections. We conclude that an increase in productivity can be expected for a large majority of the planted loblolly pine stands in the southeastern United States during this century.  相似文献   
995.
Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool‐season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool‐season standardized precipitation‐evapotranspiration index, April snow water equivalent, and water year streamflow from a network of USGS stream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree‐ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool‐season storm tracks entered western North America between approximately 41°N and 53°N. Cool‐season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south‐shifted storm tracks, while Canadian ecosystems were greener in years when the cool‐season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north‐shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool‐season storm tracks.  相似文献   
996.
细胞色素P450酶在自然界中广泛存在,能催化多种类型的氧化反应,在有机合成和生物化工方面具有重要的应用潜力。尽管大多数P450酶通常需要辅酶和复杂的电子传递体系协助活化氧分子,一些P450酶也可以利用过氧化氢作为末端氧化剂,这极大地简化了催化循环,为P450酶的合成应用提供了一条新的简便途径。本文系统地介绍了几类过氧化氢驱动的P450酶催化体系,包括脂肪酸羟化酶P450SPα和P450BSβ、脂肪酸脱羧酶P450OleTJE、人工改造的羟化酶P450BM3和P450cam突变体、以及基于底物误识别策略的P450-H2O2体系。通过分析催化反应机制,本文探讨了P450-H2O2催化体系在目前存在的挑战和可能的解决途径,并对其进一步应用前景进行了展望。  相似文献   
997.
《植物生态学报》2017,41(9):972
Aims Biological soil crust (hereafter crust) affects normalized difference vegetation index (NDVI) values in arid desert ecosystems. This study aimed to demonstrate the feasibility of combining crust NDVI values with meteorological data to distinguish the crust successional stage at the regional scale. Meanwhile, the characteristics of crust NDVI could provide the basis for the error analysis of NDVI-based surface ecological parameters estimation in desert ecosystems. We also suggested the optimum periods for crust observation based on the multi-temporal remote sensing images.Methods NDVI values of five types of dominant crusts, three typical sand-fixing shrubs and bare sand were collected by spectrometer in the field. Crusts and shrubs were randomly selected in revegetated areas established in 1956, 1964, and 1973 at Shapotou, which is on the southeastern edge of the Tengger Desert. We used the space-for-time method to study the characteristics of crust NDVI values and their responses to precipitation and temperature during the succession process of artificial sand-fixing vegetation. Additionally, we evaluated the contribution of crust NDVI values to the whole ecosystem NDVI values by comparing the NDVI values of crusts, shrubs and bare sand.Important findings 1) With succession process of the artificial sand-fixing vegetation, the crust NDVI values significantly increased. Among different crust types, we found the following order of NDVI values: Didymodon vinealis crust > Bryum argenteum crust > mixed crust > lichen crust > algae crust. 2) Crust NDVI values were significantly affected by precipitation, temperature and their interaction, and the influences showed significant seasonal differences. Furthermore, we found significantly linear correlations between crust NDVI value and precipitation, and between crust NDVI value and the shallow soil moisture content covered by crust. A significantly negative linear correlation between daily mean temperature and crust NDVI value, and a significantly exponential correlation between the surface temperature of crust and its NDVI value. With the succession process of artificial sand-fixing vegetation, the response of crust NDVI value to precipitation and temperature became more sensitive. In addition, the response of crust NDVI value to temperature was more sensitive in spring than in summer, while that to precipitation was less sensitive in spring than in summer. 3) Moss crust NDVI value was significantly higher than that of shrubs and bare sand after the rainfall event in spring, while shrubs NDVI value was significantly higher than that of crust after the rainfall event in summer. Considering the coverage weights of different ground features in sand-fixing areas, crust NDVI values contributed 90.01% and 82.53% in spring and summer, respectively, to the regional NDVI values, which were higher than those of shrubs (9.99% and 17.47% in spring and in summer, respectively). Additionally, with the succession process of artificial sand-fixing vegetation, crust NDVI values contributed more, while shrubs contributed less to regional NDVI values.  相似文献   
998.
The hazard assessment strategies for harbour areas usually rely on tools able to predict environmental threats posed by contaminated sediments, mostly based on biological and chemical parameters and distinctly less on hydrological factors. Although ports are considered semi-enclosed and low-energy systems with scarce capacity to disperse contaminants to the open sea, the hydrological pattern established within the port basin cannot be neglected, especially when the localisation of hot spots is required for clean-up and remediation actions. In the present study we considered both approaches (biological/chemical and hydrological) for assessing hot spots of harbour areas. In particular, the relationship between the sediment hazard assessment c_NWAC (cumulative Normalized and Weighted Average Concentration) index (which is based on chemical and biological data) and a properly selected hydrodynamic parameter (the bottom shear stress) of the port area was investigated. This study demonstrates that marine currents influence significantly the fine-grained fraction distribution of the surficial sediments, and thus, the spatial and temporal variability of contaminant concentration. The evaluation of hydrodynamic parameters enhances the performance of hazard tools in the localization of areas of most concern and thus a detailed knowledge of the hydrodynamic features of the port seabed is advisable before defining a proper characterisation strategy for the harbour area.  相似文献   
999.
Floodplains are highly diverse landscape elements within river systems and among the most endangered ecosystems worldwide. In this paper we complement indices developed to assess the ecological status of floodplain systems, compliant with the EU Water Framework Directive, to an overall “Benthic Invertebrate Floodplain Index” (BIFI). With the addition of taxa (mainly oligochaetes, chironomidae and amphipoda) to the floodplain index (FI), caddisfly (CHI), and dragon fly (OHI) indices a new extended BIFI can be calculated. We provide values for the calculation of the index derived from a comprehensive dataset of Austrian floodplain waters complemented by literature data. Values are given for those taxonomic groups which are abundant in the Austrian Danube and determinable in reasonable time. The new index was compared to published floodplain indices and tested with an independent data set at two floodplain segments along the Austrian Danube. The newly classified benthic invertebrates (NCBI) showed a good performance in comparison to the so far published indices and extend these to a better coverage of dynamic water bodies. Further the inclusion of abundant and species rich taxa improves the robustness of calculated values already with a low sampling effort. Altogether it is a promising tool for the integrated assessment of the ecological status of river-floodplain systems according to the EU Water Framework Directive.  相似文献   
1000.
Aldabra Atoll has the largest population of giant tortoises (Aldabrachelys gigantea) in the world. As such an important biological resource, it is necessary to understand how the effects of climate change will impact this keystone species; in particular the frequency of drought, which is likely to affect tortoise habitat. To assess whether drought frequency has changed over the last 50 years on Aldabra, we calculated the standardized precipitation index (SPI) to identify drought periods using monthly rainfall data collected during 1969–2013. We found that drought frequency has increased to more than six drought months per year today compared with about two months per year in the 1970s (t = 2.884, p = 0.006). We used MODIS normalized difference vegetation index (NDVI) as a proxy for vegetation activity, to determine how vegetation has responded to the changing drought frequency between 2000 and 2013. We found that Aldabra’s vegetation is highly responsive to changes in rainfall: anomalies in long-term mean monthly NDVI across Aldabra were found to decrease below the mean during most drought periods and increase above the mean during most non-drought periods. To investigate the response of tortoise habitat to rainfall, we extracted mean NDVI anomalies for three key habitat types. Open mixed scrub and grasslands, the preferred habitat of tortoises, showed the greatest decrease in vegetation activity during drought periods, and the greatest increase in average greenness during non-drought periods. Recent analysis has shown vegetation changes on Aldabra in recent decades. If these changes are caused by decreased precipitation, then the increased frequency of drought could impact the tortoise population, in both the short and long term, by limiting the quality and quantity of forage and/or shade availability within favoured habitats, and by changing the habitat composition across the atoll.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号