首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   6篇
  国内免费   33篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   9篇
  2019年   16篇
  2018年   14篇
  2017年   15篇
  2016年   14篇
  2015年   10篇
  2014年   19篇
  2013年   65篇
  2012年   20篇
  2011年   15篇
  2010年   9篇
  2009年   20篇
  2008年   24篇
  2007年   19篇
  2006年   15篇
  2005年   24篇
  2004年   22篇
  2003年   18篇
  2002年   18篇
  2001年   15篇
  2000年   11篇
  1999年   13篇
  1998年   8篇
  1997年   16篇
  1996年   12篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有499条查询结果,搜索用时 15 毫秒
171.
Risk assessors are often cautioned against the use of tests of highly bioavailable salt solutions added to soil to estimate the bioaccumulation of chemicals from waste site soils by plants. In this investigation, a large number of laboratory and field studies that measured the bioaccumulation of inorganic chemicals in plants were reviewed. The objective was to discern whether or not the relationship between the concentration of the element in aboveground vegetation and that in soil was different if the contamination was aged in the field rather than freshly added to soil in salt solution. For two of the eight elements, selenium and cadmium, salt solution experiments were associated with greater soil-plant uptake ratios than field measurements. Thus, these are not reliable data for use in the derivation of plant uptake regressions for screening-level ecological risk assessments at field sites. In contrast, the plant uptake of arsenic, copper, lead, mercury, nickel, and zinc, when added in salt solutions, was generally within the 95% prediction limit of regressions derived from field data. Chemical form, plant taxon, soil type, experimental methodology, and aging may be as important as the source of the chemical in predicting plant uptake of inorganic chemicals from soil.  相似文献   
172.
Chelate-Enhanced Phytoremediation of Soils Polluted with Heavy Metals   总被引:10,自引:0,他引:10  
In general, hyperaccumulators are low biomass, slow-growing plants. High biomass non-hyperaccumulator plants by themselves are not a valid alternative for phytoextraction as they also have many limitations, such as small root uptake and little root-to-shoot translocation. In this context, chemically-induced phytoextraction (based on the fact that the application of certain chemicals, mostly chelating agents, to the soil significantly enhances metal accumulation by plants) has been proposed as an alternative for the cleaning up of metal polluted soils. But chelate-induced phytoextraction increases the risk of adverse environmental effects due to metal mobilization during extended periods of time. In order to minimize the phytotoxicity and environmental problems associated with the use of chelating agents, nowadays, research is being carried out on the gradual application of small doses of the chelating agent during the growth period. However, EDTA utilization in the future will most likely be limited to ex situconditions where control of the leachates can be achieved. There are other mobilizing agents which are much less harmful to the environment such as citric acid, NTA, and particularly EDDS. Research should also be aimed towards more innovative agronomic practices. Environmentally safe methods of chelate-induced phytoextraction must be developed before steps towards further development and commercialization of this remediation technology are taken. Most importantly, more applied projects in this field are needed to clarify the real potential and risks of this technology.  相似文献   
173.
Steel-industry slag, a co-product of iron and steel production, is produced and sold for use in a wide range of applications. A comprehensive study of the potential human health risks associated with the environmental applications (e.g., fill, roadbase, landscaping) of iron- and steel-making slag was performed using characterization data for 73 samples of slag collected from blast furnaces, basic oxygen furnaces, and electric arc furnaces. Characterization data were compared to regulatory health-based “screening” benchmarks to determine constituents of interest. Antimony, beryllium, cadmium, trivalent and hexavalent chromium, manganese, thallium, and vanadium were measured above screening levels and were assessed in an application-specific exposure assessment using standard U.S. Environmental Protection Agency risk assessment methods. A stochastic analysis was conducted to evaluate the variability and uncertainty in the inhalation exposure and risk estimates, and the oral bioaccessibility of certain metals in the slag was quantified. The risk assessment found no significant hazards to human health as a result of the environmental applications of steel-industry slag. However, site-specific ecological risk assessment may be required for slag applications in and around small water bodies with limited dilution volume, because high pH and aluminum were found to leach at levels that may be harmful to aquatic life  相似文献   
174.
The oyster Crassostrea rhizophorae has been used as a biomonitor of trace metal contamination in two Brazilian coastal systems. C. rhizophorae were collected in January 1998 from 15 stations (from 4 coastal inlets (including 1 estuary) and 1 coastal beach) near Macau, Rio Grande do Norte (RN), Brazil, a region affected by the activities of the oil industry and salt manufacture in coastal salt ponds; oysters were also collected in September 1999 from 8 stations in the Curimatau estuary (RN), an estuary becoming increasingly affected by shrimp farming activities. C. rhizophorae is a net accumulator of trace metals and can be used as a biomonitor, the accumulated soft tissue concentrations representing integrated records of bioavailable metal over the life of the oyster. At Macau, significant differences in oyster accumulated concentrations (and hence bioavailabilities to the oyster) of Fe, Zn, Cu, and Mn were found between stations; raised zinc availabilities at the coastal site are in close proximity to oil industry activities but the very high availabilities of Fe, Cu and Mn in the Rio dos Cavalos estuary originate from an unknown source. In the Curimatau estuary, bioavailabilities of Mn, Pb and Cd, but particularly of Cu and Zn, to the oysters are raised at the two most downstream sites, the only sites below the effluent of a large shrimp farming enterprise. The oysters also act as a local food source, and concentrations of Zn, Cu and Pb of some of the oysters are above typical public health recommended limits.  相似文献   
175.
Ecological risk assessment (ERA) of inorganic metals and metalloids (metals) must be specific to these substances and cannot be generic because most metals are naturally occurring, some are essential, speciation affects bioavailability, and bioavailability is determined by both external environmental conditions and organism physiological/biological characteristics. Key information required for ERA of metals includes: emissions, pathways, and movements in the environment (Do metals accumulate in biota above background concentrations?); the relationship between internal dose and/or external concentration (Are these metals bioreactive?); and the incidence and severity of any effects (Are bioreactive metals likely to result in adverse or, in the case of essential metals, beneficial effects?) — ground-truthed in contaminated areas by field observations. Specific requirements for metals ERA are delineated for each ERA component (Hazard Identification, Exposure Analysis, Effects Analysis, Risk Characterization), updating Chapman and Wang (2000). In addition, key specific information required for ERA is delineated by major information category (conceptual diagrams, bioavailability, predicted environmental concentration [PEC], predicted no effect concentration [PNEC], tolerance, application [uncertainty] factors, risk characterization) relative to three different tiered, iterative levels of ERA: Problem Formulation, Screening Level ERA (SLERA), and Detailed Level ERA (DLERA). Although data gaps remain, a great deal of progress has been made in the last three years, forming the basis for substantial improvements to ERA for metals.  相似文献   
176.
In most soils, inorganic phosphorus occurs at fairly low concentrations in the soil solution whilst a large proportion of it is more or less strongly held by diverse soil minerals. Phosphate ions can indeed be adsorbed onto positively charged minerals such as Fe and Al oxides. Phosphate (P) ions can also form a range of minerals in combination with metals such as Ca, Fe and Al. These adsorption/desorption and precipitation/dissolution equilibria control the concentration of P in the soil solution and, thereby, both its chemical mobility and bioavailability. Apart from the concentration of P ions, the major factors that determine those equilibria as well as the speciation of soil P are (i) the pH, (ii) the concentrations of anions that compete with P ions for ligand exchange reactions and (iii) the concentrations of metals (Ca, Fe and Al) that can coprecipitate with P ions. The chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora. The aim of this paper is to give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants. Amongst these, the uptake activity of plant roots should be taken into account in the first place. A second group of activities which is of major concern with respect to P bioavailability are those processes that can affect soil pH, such as proton/bicarbonate release (anion/cation balance) and gaseous (O2/CO2) exchanges. Thirdly, the release of root exudates such as organic ligands is another activity of the root that can alter the concentration of P in the soil solution. These various processes and their relative contributions to the changes in the bioavailability of soil inorganic P that can occur in the rhizosphere can considerably vary with (i) plant species, (ii) plant nutritional status and (iii) ambient soil conditions, as will be stressed in this paper. Their possible implications for the understanding and management of P nutrition of plants will be briefly addressed and discussed.  相似文献   
177.
The role of soil, straw, and sawdust as supports in enhancing pentachlorophenol (PCP) mineralization by an indigenous soil consortium was examined by assessing the bioavailability of the substrate and other nutrients. PCP sorption tests were conducted in the presence of sterile supports to evaluate PCP bioavailability. Indigenous biomass, practically free of soil particles, was prepared to test the influence of sterile soil and soil components on the mineralization of increasing PCP concentrations. Organic supports such as straw and sawdust were very good sorbents for PCP, resulting in a slow, continuous desorption of substrate, high mineralization rates, and reduced toxicity to the active biomass. Soil and clay retained less PCP and desorbed it in decreasing amounts. Soil was the best amendment to enhance the mineralization of 100 mg/L PCP. Soil, soil extract, and the lowest-molecular-weight fraction of the soil extract facilitated the complete mineralization of 300 mg/L of PCP with a lag time of about 9 days, compared to 21 days for the unamended culture. Addition of soil enhanced PCP mineralization by an indigenous consortium, probably because soil particles served as an adsorbent for the contaminant to decrease its toxicity, as a support for biomass colonization, and as a source of supplementary nutrients for the biomass. This concept is of importance, particularly for the production of active and resistant biomass for the biotreatment of contaminated soils.  相似文献   
178.
两种典型土壤胶体对镉的生物有效性的影响   总被引:1,自引:0,他引:1  
李朝丽  周立祥 《生态学报》2009,29(4):1814-1822
采用黑麦草盆栽试验,研究了人工Cd污染(10.91mg·kg-1)黄棕壤和红壤(简称原土)及其胶体组分(简称胶体)和去胶后组分(简称去胶)Cd的生物有效性,并研究了EDTA对Cd解吸和生物有效性的影响.结果表明:(1)各处理黑麦草株高、地上部干重、根干重、总生物量都表现为胶体>原土>去胶,胶体上总生物量分别是原土和去胶处理的(1.31±0.02)倍和(1.82±0 21)倍.(2)黑麦草体内Cd浓度、及其对Cd的富集系数都表现为胶体<原土<去胶,表明胶体中Cd的生物有效性<原土<去胶.(3)黄棕壤各组分Cd的解吸率分别表现为胶体和原土约为0,去胶组分为(10.5±3.5)%,红壤各组分平均为(20.8±1 9)%,但加入EDTA则明显增加了Cd的解吸,导致黑麦草体内Cd浓度显著增加,黑麦草地上部干重、根干重、总生物量降低.EDTA对Cd的活化作用表现为去胶>原土>胶体,黄棕壤>红壤,EDTA对各处理植株Cd总量的影响与此吻合.这说明,土壤镉的生物有效性受土壤胶体及其pH等的强烈影响.  相似文献   
179.
李德鹏  王诗生 《生态学报》2011,31(6):1749-1755
利用江西鹰潭红壤生态实验站的长期施肥定位试验,采用田间微域研究了五氯酚(pentachlorophenol, PCP)在红壤性水稻田生态系统中的降解动态和稻谷的富集特征。四种长期施肥处理包括:未施肥(对照,CK)、施尿素(N)、施有机肥(OM)以及施有机肥+尿素(N+OM)。结果表明,长期施用OM或N+OM能显著增加土壤微生物活性。PCP在土壤-水稻生态系统中的降解遵循一级动力学方程,在CK、N、OM 和 N+OM 4 种处理土壤中降解半衰期分别为 27.7、35.2、24.8、22.4 d。表明长期施用OM或N+OM能加速PCP降解,而长期施用N抑制PCP降解。土壤中PCP(初始浓度85 mg/kg)显著减少水稻茎和稻谷生物量,但是对水稻根生物量并没有显著影响。在4种处理中水稻稻谷中PCP含量并没有显著差异,且稻谷的生物富集系数均小于0.01。PCP虽然在土壤-水稻生态系统中的降解半衰期较短,但是仍可以在水稻稻谷中有一定的生物富集,潜在的食品安全风险依然存在。  相似文献   
180.
从酸奶中筛选到一株乳链菌肽产生菌A1-06,研究了各种条件因素对其合成能力的影响。通过发酵培养基的优化,在以质量分数2.0%的蔗糖为唯一碳源、0.25%的酵母膏为唯一氮源条件下,A1-06合成乳链菌肽的产率为0.3 g.L-1,效价为1.018×106U.L-1,比在基础培养基中合成的活性提高17%。Mn2+对A1-06的合成能力有抑制作用,而吐温-80则有促进作用。对乳链菌肽及其Zn2+和Fe2+的螯合物的抑菌效果进行了比较,结果表明,乳链菌肽螯合Fe(Ⅱ)对G-菌有抑制作用,6 h的抑菌率为50.3%,而乳链菌肽、乳链菌肽螯合Zn(Ⅱ)对G-菌无明显的抑制作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号