首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   27篇
  国内免费   32篇
  2024年   1篇
  2023年   10篇
  2022年   13篇
  2021年   14篇
  2020年   15篇
  2019年   35篇
  2018年   21篇
  2017年   19篇
  2016年   16篇
  2015年   9篇
  2014年   14篇
  2013年   15篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   9篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有279条查询结果,搜索用时 31 毫秒
11.
Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: ?6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: ?47.9%, ?41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.  相似文献   
12.
Larger and more frequent disturbances are motivating efforts to accelerate recovery of foundational perennial species by focusing efforts into establishing island patches to sustain keystone species and facilitate recovery of the surrounding plant community. Evaluating the variability in abiotic and biotic factors that contribute to differences in survival and establishment can provide useful insight into the relative importance of these factors. In the western United States, severe degradation of the sagebrush steppe has motivated substantial efforts to restore native perennial cover, but success has been mixed. In this study, we evaluated survival of more than 3,000 sagebrush seedlings transplanted on 12 patches totaling 650 ha within a 113,000 ha burn area, and related the survival to organismal and subtaxonomic traits, and to landscape variables. Big sagebrush has high intraspecific diversity attributed to subspecies and cytotypes identifiable through ultraviolet (UV)‐induced fluorescence, length:width of leaves, or genome size (ploidy). Of these organismal traits, survival was related only to UV fluorescence, and then only so when landscape variables were excluded from analyses. The most significant landscape variable affecting survival was soil taxonomic subgroup, with much lower survival where buried restrictive layers reduce deep water infiltration. Survival also decreased with greater slope steepness, exotic annual grass cover, and burn severity. Survival was optimal where perennial bunchgrasses comprised 8–14% of total cover. These soil, topographic, and community condition factors revealed through monitoring of landscape‐level treatments can be used to explain the success of plantings and to strategically plan future restoration projects.  相似文献   
13.
To analyze and promote resource efficiency in urban areas, it is important to characterize urban metabolism and particularly, material flows. Material flow analysis (MFA) offers a means to capture the dynamism of cities and their activities. Urban‐scale MFAs have been conducted in many cities, usually employing variants of the Eurostat methodology. However, current methodologies generally reduce the study area into a “black box,” masking details of the complex processes within the city's metabolism. Therefore, besides the aggregated stocks and flows of materials, the movement of materials—often embedded in goods or commodities—should also be highlighted. Understanding the movement and dispersion of goods and commodities can allow for more detailed analysis of material flows. We highlight the potential benefits of using high‐resolution urban commodity flows in the context of understanding material resource use and opportunities for conservation. Through the use of geographic information systems and visualizations, we analyze two spatially explicit datasets: (1) commodity flow data in the United States, and (2) Global Positioning System‐based commercial vehicle (truck) driver activity data in Singapore. In the age of “big data,” we bring advancements in freight data collection to the field of urban metabolism, uncovering the secondary sourcing of materials that would otherwise have been masked in typical MFA studies. This brings us closer to a consumption‐based, finer‐resolution approach to MFA, which more effectively captures human activities and its impact on urban environments.  相似文献   
14.
  • In degraded dryland systems, native plant community re‐establishment following disturbance is almost exclusively carried out using seeds, but these efforts commonly fail. Much of this failure can be attributed to the limited understanding of seed dormancy and germination traits.
  • We undertook a systematic classification of seed dormancy of 26 species of annual and perennial forbs and shrubs that represent key, dominant genera used in restoration of the Great Basin ecosystem in the western United States. We examined germination across a wide thermal profile to depict species‐specific characteristics and assessed the potential of gibberellic acid (GA3) and karrikinolide (KAR1) to expand the thermal germination envelope of fresh seeds.
  • Of the tested species, 81% produce seeds that are dormant at maturity. The largest proportion (62%) exhibited physiological (PD), followed by physical (PY, 8%), combinational (PY + PD, 8%) and morphophysiological (MPD, 4%) dormancy classes. The effects of chemical stimulants were temperature‐ and species‐mediated. In general, mean germination across the thermal profile was improved by GA3 and KAR1 for 11 and five species, respectively. We detected a strong germination response to temperature in freshly collected seeds of 20 species. Temperatures below 10 °C limited the germination of all except Agoseris heterophylla, suggesting that in their dormant state, the majority of these species are thermally restricted.
  • Our findings demonstrate the utility of dormancy classification as a foundation for understanding the critical regenerative traits in these ecologically important species and highlight its importance in restoration planning.
  相似文献   
15.
16.
Human activity has altered 33–50% of Earth's surface, including temperate grasslands and sagebrush rangelands, resulting in a loss of biodiversity. By promoting habitat for sensitive or wide-ranging species, less exigent species may be protected in an umbrella effect. The greater sage-grouse (Centrocercus urophasianus; sage-grouse) has been proposed as an umbrella for other sagebrush-obligate species because it has an extensive range that overlaps with many other species, it is sensitive to anthropogenic activity, it requires resources over large landscapes, and its habitat needs are known. The efficacy of the umbrella concept, however, is often assumed and rarely tested. Therefore, we surveyed sage-grouse pellet occurrence and sagebrush-associated songbird abundance in northwest Colorado, USA, to determine the amount of habitat overlap between sage-grouse and 4 songbirds (Brewer's sparrow [Spizella breweri], sage thrasher [Oreoscoptes montanus], sagebrush sparrow [Artemisiospiza nevadensis]), and green-tailed towhee [Pipilo chlorurus]). During May and June 2013–2015, we conducted standard point count breeding surveys for songbirds and counted sage-grouse pellets within 300 10-m radius plots. We modeled songbird abundance and sage-grouse pellet occurrence with multi-scaled environmental features, such as sagebrush cover and bare ground. To evaluate sage-grouse as an umbrella for sagebrush-associated passerines, we determined the correlation between probability of sage-grouse pellet occurrence and model-predicted songbird densities per sampling plot. We then classified the sage-grouse probability of occurrence as high (probability >0.5) and low (probability ≤0.5) and mapped model-predicted surfaces for each species in our study area. We determined average songbird density in areas of high and low probability of sage-grouse occurrence. Sagebrush cover at intermediate scales was an important predictor for all species, and ground cover was important for all species except sage thrashers. Areas with a higher probability of sage-grouse occurrence also contained higher densities of Brewer's sparrows, green-tailed towhees, and sage thrashers, but predicted sagebrush sparrow densities were lower in these areas. In northwest Colorado, sage-grouse may be an effective umbrella for Brewer's sparrows, green-tailed towhees, and sage thrashers, but sage-grouse habitat does not appear to capture areas that support high sagebrush sparrow densities. A multi-species focus may be the best management and conservation strategy for several species of concern, especially those with conflicting habitat requirements. © The Wildlife Society, 2019  相似文献   
17.
Understanding the ephemerality of trees used as roosts by wildlife, and the number of roost trees needed to sustain their populations, is important for forest management and wildlife conservation. Several studies indicate that roosts are limiting to bats, but few studies have monitored longevity of roost trees used by bats over several years. From 2004–2007 in Cypress Hills Interprovincial Park, Saskatchewan, Canada, several big brown bats (Eptesicus fuscus) from a maternity group roosted in cavities in trembling aspen (Populus tremuloides) trees approximately 7 km southeast away from their original known roosting area (RA1). Using a long-term data set of the roost trees used by bats in this area from 2000–2007, we evaluated whether the movement of bats to the new roosting area (RA4) corresponded with annual and cumulative losses of roost trees. We also determined whether longevity of the roosts from the time we discovered bats first using them differed between the 2 roosting areas based on Kaplan-Meier estimates. Bats began using RA4 in addition to RA1 in 2004, when the cumulative loss of roost trees in RA1 over 3 consecutive years reached 18%. Most bats exclusively roosted in RA4 in 2007, when the cumulative loss of roost trees over 6 consecutive years had reached 46% in RA1. Annual survival for roost trees, from when we first discovered bats using them, was generally lower in RA1 than in RA4. Our results suggest that the movement of bats to the new roosting area corresponded with high losses of roost trees in RA1. This provides additional evidence that to maintain high densities of suitable roost trees for bats in northern temperature forests over several decades, management plans need to recruit live and dead trees in multiple age classes and stages of decay that will be suitable for the formation of new cavities. © 2019 The Wildlife Society.  相似文献   
18.
19.
Ecologically relevant references are useful for evaluating ecosystem recovery, but references that are temporally static may be less useful when environmental conditions and disturbances are spatially and temporally heterogeneous. This challenge is particularly acute for ecosystems dominated by sagebrush (Artemisia spp.), where communities may require decades to recover from disturbance. We demonstrated application of a dynamic reference approach to studying sagebrush recovery using three decades of sagebrush cover estimates from remote sensing (1985–2018). We modelled recovery on former oil and gas well pads (n = 1200) across southwestern Wyoming, USA, relative to paired references identified by the Disturbance Automated Reference Toolset. We also used quantile regression to account for unmodelled heterogeneity in recovery, and projected recovery from similar disturbance across the landscape. Responses to weather and site‐level factors often differed among quantiles, and sagebrush recovery on former well pads increased more when paired reference sites had greater sagebrush cover. Little (<5%) of the landscape was projected to recover within 100 years for low to mid quantiles, and recovery often occurred at higher elevations with cool and moist annual conditions. Conversely, 48%–78% of the landscape recovered quickly (within 25 years) for high quantiles of sagebrush cover. Our study demonstrates advantages of using dynamic reference sites when studying vegetation recovery, as well as how additional inferences obtained from quantile regression can inform management.  相似文献   
20.
Habitat loss is the most prevalent threat to biodiversity in North America. One of the most threatened landscapes in the United States is the sagebrush (Artemisia spp.) ecosystem, much of which has been fragmented or converted to non‐native grasslands via the cheatgrass‐fire cycle. Like many sagebrush obligates, greater sage‐grouse (Centrocercus urophasianus) depend upon sagebrush for food and cover and are affected by changes to this ecosystem. We investigated habitat selection by 28 male greater sage‐grouse during each of 3 years after a 113,000‐ha wildfire in a sagebrush steppe ecosystem in Idaho and Oregon. During the study period, seeding and herbicide treatments were applied for habitat restoration. We evaluated sage‐grouse responses to vegetation and post‐fire restoration treatments. Throughout the 3 years post‐fire, sage‐grouse avoided areas with high exotic annual grass cover but selected strongly for recovering sagebrush and moderately strongly for perennial grasses. By the third year post‐fire, they preferred high‐density sagebrush, especially in winter when sagebrush is the primary component of the sage‐grouse diet. Sage‐grouse preferred forb habitat immediately post‐fire, especially in summer, but this selection preference was less strong in later years. They also selected areas that were intensively treated with herbicide and seeded with sagebrush, grasses, and forbs, although these responses varied with time since treatment. Wildfire can have severe consequences for sagebrush‐obligate species due to loss of large sagebrush plants used for food and for protection from predators and thermal extremes. Our results show that management efforts, including herbicide application and seeding of plants, directed at controlling exotic annual grasses after a wildfire can positively affect habitat selection by sage‐grouse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号