首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   48篇
  国内免费   13篇
  157篇
  2024年   9篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   9篇
  2019年   6篇
  2018年   12篇
  2017年   12篇
  2016年   12篇
  2015年   11篇
  2014年   2篇
  2013年   12篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有157条查询结果,搜索用时 0 毫秒
81.
Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually.  相似文献   
82.
83.
A bifunctional plasmid (pMP358) able to replicate and to express cloned human dihydrofolate reductase cDNA (cDHFR) in both Escherichia coli and Bacillus subtilis was constructed. The expression of cDHFR in B. subtilis was the result of a deletion that placed the cDNA fragment under the control of the chloramphenicol acetyltransferase (CAT) gene promoter of Staphylococcus aureus plasmid pC194. By sequence analysis of plasmid pMP358, we observed a gene fusion occurring between the cDHFR and the 32nd codon of the CAT gene. We report that such a “hybrid” gene is able to direct the synthesis of a 25-kDal “hybrid” protein, which was found to be inducible by supplementing B. subtilis cells with sublethal doses of chloramphenicol.  相似文献   
84.
85.
Prostaglandin-H-synthase is a bifunctional enzyme catalyzing conversion of arachidonic acid into prostaglandin H2 as a result of cyclooxygenase and peroxidase reactions. The dependence of the rate of the cyclooxygenase reaction on oxygen concentration in the absence and in the presence of electron donor was determined. A two-dimensional kinetic scheme accounting for independent proceeding and mutual influence of the cyclooxygenase and peroxidase reactions and also for hierarchy of the rates of these reactions was used as a model. In the context of this model, it was shown that there are irreversible stages in the mechanism of the cyclooxygenase reaction between points of substrate donation (between donation of arachidonic acid and the first oxygen molecule and also between donation of two oxygen molecules).  相似文献   
86.
It is urgently required to develop highly efficient and stable bifunctional non‐noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting. In this study, a facile electrospinning followed by a post‐carbonization treatment to synthesize nitrogen‐doped carbon nanofibers (NCNFs) integrated with Ni and Mo2C nanoparticles (Ni/Mo2C‐NCNFs) as water splitting electrocatalysts is developed. Owing to the strong hydrogen binding energy on Mo2C and high electrical conductivity of Ni, synergetic effect between Ni and Mo2C nanoparticles significantly promote both HER and OER activities. The optimized hybrid (Ni/Mo2C(1:2)‐NCNFs) delivers low overpotentials of 143 mV for HER and 288 mV for OER at a current density of 10 mA cm?2. An alkaline electrolyzer with Ni/Mo2C(1:2)‐NCNFs as catalysts for both anode and cathode exhibits a current density of 10 mA cm?2 at a voltage of 1.64 V, which is only 0.07 V larger than the benchmark of Pt/C‐RuO2 electrodes. In addition, an outstanding long‐term durability during 100 h testing without obvious degradation is achieved, which is superior to most of the noble‐metal‐free electrocatalysts reported to date. This work provides a simple and effective approach for the preparation of low‐cost and high‐performance bifunctional electrocatalysts for efficient overall water splitting.  相似文献   
87.
88.
Synthetic biology seeks to reprogram microbial cells for efficient production of value-added compounds from low-cost renewable substrates. A great challenge of chemicals biosynthesis is the competition between cell metabolism and target product synthesis for limited cellular resource. Dynamic regulation provides an effective strategy for fine-tuning metabolic flux to maximize chemicals production. In this work, we created a tunable growth phase-dependent autonomous bifunctional genetic switch (GABS) by coupling growth phase responsive promoters and degrons to dynamically redirect the carbon flux for metabolic state switching from cell growth mode to production mode, and achieved high-level GABA production from low-value glycerol in Corynebacterium glutamicum. A ribosome binding sites (RBS)-library-based pathway optimization strategy was firstly developed to reconstruct and optimize the glycerol utilization pathway in C. glutamicum, and the resulting strain CgGly2 displayed excellent glycerol utilization ability. Then, the initial GABA-producing strain was constructed by deleting the GABA degradation pathway and introducing an exogenous GABA synthetic pathway, which led to 5.26 g/L of GABA production from glycerol. In order to resolve the conflicts of carbon flux between cell growth and GABA production, we used the GABS to reconstruct the GABA synthetic metabolic network, in which the competitive modules of GABA biosynthesis, including the tricarboxylic acid (TCA) cycle module and the arginine biosynthesis module, were dynamically down-regulated while the synthetic modules were dynamically up-regulated after sufficient biomass accumulation. Finally, the resulting strain G7-1 accumulated 45.6 g/L of GABA with a yield of 0.4 g/g glycerol, which was the highest titer of GABA ever reported from low-value glycerol. Therefore, these results provide a promising technology to dynamically balance the metabolic flux for the efficient production of other high value-added chemicals from a low-value substrate in C. glutamicum.  相似文献   
89.
纤维素和木聚糖的充分利用对于生物燃料的生产是非常重要的。文中利用PCR的方法从嗜热子囊菌Thermoascus crustaceus JCM12803中克隆到一个新颖的双功能木聚糖/纤维素酶基因Tcxyn10a,并将其在毕赤酵母Pichia pastoris GS115中实现高效异源表达。经过蛋白纯化和酶学性质研究分析,TcXyn10A的最适pH值和最适温度分别为5.0和65-70℃,能够在酸性至碱性(pH 3.0-11.0)条件下和60℃下保持稳定;对榉木木聚糖、小麦阿拉伯木聚糖、羧甲基纤维素钠和地衣多糖均有降解活性,比活分别为(1 480±26)U/mg、(2 055±28)U/mg、(7.4±0.2)U/mg和(10.9±0.4)U/mg;同源建模结构以及分子对接试验表明,双功能酶TcXyn10A只含有单一催化结构域,且木聚糖底物与纤维素底物共用一条催化通道。文中为探索双功能酶结构与其功能的关系提供了很好的素材。  相似文献   
90.
The BrdU-Hoechst staining technique has been used in analyzing the effect of caffeine (CAF) on chromosome aberrations and sister-chromatid exchanges (SCEs) induced by mitomycin C (MC). CAF increased the frequency of SCE in MC-treated chromosomes in all specimens. The combination of MC and CAF caused a remarkable increase in all types of chromosome aberrations, but the most startling effect was the appearance of many cells with multiple aberrations (shattered chromosomes). The BrdU-Hoechst technique showed that the shattered chromosomes did not appear in cells that had replicated only once, but did occur in cells which replicated twice in the presence of MC and CAF. The large majority of chromatid breaks observed did not involve areas common to SCE; and the SCE frequency significantly increased in spite of the existence of multiple breaks. This indicates that very few of the breaks are incomplete exchanges and that the mechanism for formation of SCE might be different from that of chromosome breaks. In another experiment, monofunctional-MC (M-MC) had a small effect on SCE rates, though it induced shattered chromosomes with CAF post-treatment. Possible differences in the mechanisms leading to SCE and chromosome breaks are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号