首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1760篇
  免费   33篇
  国内免费   100篇
  1893篇
  2023年   89篇
  2022年   115篇
  2021年   106篇
  2020年   176篇
  2019年   230篇
  2018年   205篇
  2017年   175篇
  2016年   140篇
  2015年   41篇
  2014年   115篇
  2013年   274篇
  2012年   83篇
  2011年   12篇
  2010年   18篇
  2009年   7篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   16篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   8篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1978年   1篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1893条查询结果,搜索用时 15 毫秒
71.
Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer’s disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities.We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid β protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection.Remarkably, our results indicate, as proof‐of‐principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.  相似文献   
72.
Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer’s disease.  相似文献   
73.
Alzheimer disease (AD), a prevalent neurodegenerative disorder, is one of the leading causes of dementia. However, there is no effective drug for this disease to date. Picrasma quassioides (D.Don) Benn, a Chinese traditional medicine, was used mainly for the treatment of inflammation, fever, microbial infection and dysentery. In this paper, we reported that the EtOAc extract of Picrasma quassioides stems showed potential neuroprotective activities in l-glutamate-stimulated PC12 and Aβ25-35-stimulated SH-SY5Y cell models, as well as improved memory and cognitive abilities in AD mice induced by amyloid-β peptide. Moreover, it was revealed that the anti-AD mechanism was related to suppressing neuroinflammatory and reducing Aβ1-42 deposition using ELISA assay kits. To clarify the active components of the EtOAc extract of Picrasma quassioides stems, a systematic phytochemistry study led to isolate and identify six β-carboline alkaloids (16), seven canthin-6-one alkaloids (713), and five quassinoids (1418). Among them, four β-carbolines (13, and 6) and six canthin-6-ones (711, and 13) exhibited potential neuroprotective activities in vitro. Based on these date, the structure-activity relationships of alkaloids were discussed. Furthermore, molecular docking experiments showed that compounds 2 and 3 have high affinity for both of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYPKIA) and butyrylcholinesterase (BuChE).  相似文献   
74.
A series of 4-hydroxyl aurone derivatives were designed synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease. The results demonstrated that most of the derivatives exhibited good multifunctional properties. Among them, compound 14e displayed good inhibitory activities of self- and Cu2+-induced Aβ1–42 aggregation with 99.2% and 84.0% at 25 μM, respectively, and high antioxidant activity with a value 1.90-fold of Trolox. In addition, 14e also showed remarkable inhibitory activities of both monoamine oxidase A and B with IC50 values of 0.271 μM and 0.393 μM, respectively. However the 6-methoxyl aurones 15ac revealed excellent selectivity toward MAO-B. Furthermore, the representative compounds 14e and 15b displayed good metal-chelating abilities and blood–brain barrier (BBB) permeabilities in vitro.  相似文献   
75.
Osmolytes have been proposed as treatments for neurodegenerative proteinopathies including Alzheimer’s disease. However, for osmolytes to reach the clinic their efficacy must be improved. In this work, copper(I)-catalyzed azide–alkyne cycloaddition chemistry was used to synthesize glycoclusters bearing six copies of trehalose, lactose, galactose or glucose, with the aim of improving the potency of these osmolytes via multivalency. A trehalose glycocluster was found to be superior to monomeric trehalose in its ability to retard the formation of amyloid-beta peptide 40 (Aβ40) fibrils and protect neurons from Aβ40-induced cell death.  相似文献   
76.
本文研究了落羽杉和墨杉及其杂交后代中山杉302(落羽杉♀×墨杉♂)、中山杉407(墨杉♀×落羽杉♂)、回交代中山杉118(中山杉302♀×墨杉♂)在自然干旱胁迫和复水过程中,光合特征、抗氧化酶系统和形态特性等的响应.结果表明:随干旱时间的延长,所有植株的净光合速率逐渐降低、脯氨酸开始积累且抗氧化酶系统逐渐清除丙二醛的毒性.胁迫至第8天,落羽杉净光合速率的下降幅度最大,而中山杉118的水分利用效率最高、丙二醛含量最少;墨杉的超氧化物歧化酶活性和脯氨酸含量增长最大.复水2 d后,所有植物的参数均有不同程度的恢复,其中,中山杉118恢复速率最快,其净光合速率和脯氨酸含量分别恢复了74.4%和60.2%.复水9 d后,所有植株的测定指标基本恢复至或接近正常水平,其中,中山杉118的生物量未受影响且根冠比显著增加.植物的耐旱能力依次为墨杉>中山杉118>中山杉407>中山杉302>落羽杉.回交品种中山杉118的杂种优势明显,较大程度地遗传了墨杉的耐旱性,该结论可为耐旱中山杉品种的杂交选育和推广应用提供科学依据.  相似文献   
77.
Humans, unlike African apes, have relatively robust fifth metatarsals (Mt5) presumably reflecting substantial weight-bearing and stability function in the lateral column of the former. When this morphological difference emerged during hominin evolution is debated. Here we investigate internal diaphyseal structure of Mt5s attributed to Australopithecus (from Sterkfontein), Paranthropus (from Swartkrans), and Homo (from Olduvai, Dmanisi, and Dinaledi) placed in the context of human and African ape Mt5 internal diaphyseal structure. ‘Whole-shaft’ properties were evaluated from 17 cross sections sampling 25% to 75% diaphyseal length using computed tomography. To assess structural patterns, scaled cortical bone thicknesses (sCBT) and scaled second moments of area (sSMA) were visualized and evaluated through penalized discriminant analyses. While the majority of fossil hominin Mt5s exhibited ape-like sCBT, their sSMA were comparatively more human-like. Human-like functional loading of the lateral column existed in at least some fossil hominins, although perhaps surprisingly not in hominins from Dmanisi or Dinaledi.  相似文献   
78.
胡萝卜雄性不育材料,在胡萝卜育种中具有重要作用。本研究描述了一种从武汉市洪山区野生胡萝卜材料中获得的野生瓣化型胡萝卜雄性不育材料(‘武野-不育’,简称‘Wuye-BY’)的特征。该野生瓣化型雄性不育胡萝卜特征在于:无明显膨大的肉质根,嫩茎、叶片及其叶柄深绿色,几乎无毛,无花瓣和花药。花萼数量8~10个,花丝数量为0~2个,染色体数目为2n=18。双悬果顶端及其花丝顶端具有大量的蜜液,能接受栽培胡萝卜花粉。杂交F1的根大小、根重,胡萝卜素、总糖和维生素C含量,具有明显优势。  相似文献   
79.
Alzheimer’s disease (AD) is a progressive neurodegenerative brain disease and is the most common cause of dementia in the elderly. The main hallmark of AD is the deposition of insoluble amyloid (Aβ) outside the neuron, leading to amyloid plaques and neurofibrillary tangles in the brain. Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6), a novel porphyrin-peptide, has both microperoxidase activity and cell permeability. In the present study, DhHP-6 efficiently inhibited the aggregation of Aβ and reduced the β-sheet percentage of Aβ from 89.1% to 78.3%. DhHP-6 has a stronger affinity (KD = 100 ± 12 μM) for binding with Aβ at Phe4, Arg5, Val18, Glu11 and Glu22. In addition, DhHP-6 (100 μM) significantly prolonged lifespan, alleviated paralysis and reduced Aβ plaque formation in the Aβ1–42 transgenic Caenorhabditis elegans CL4176 model of AD. Our results demonstrate that DhHP-6 is a potential drug candidate that efficiently protects a transgenic C. elegans model of Alzheimer’s disease by inhibiting Aβ aggregation.  相似文献   
80.
黄霞  卢禹 《广西植物》2016,36(9):1082-1086
该研究首次以文心兰的类原球茎( protocorm-like bodies, PLBs)为外植体进行愈伤组织诱导及其植株再生培养,并分析了不同浓度的TDZ和2,4-D配比对愈伤组织增殖的影响。结果表明:以1/2MS为基本培养基,添加1 mg.L-1 TDZ与3 mg.L-12,4-D,从接种的 PLBs上可以诱导出乳白色的、较疏松的愈伤组织,诱导频率达到100%。愈伤组织继代培养时,在2,4-D浓度为0.5~2.0 mg.L-1的范围内,其增殖主要受TDZ浓度的影响,TDZ浓度从1.0 mg.L-1降低到0.5 mg.L-1,愈伤组织鲜重增殖倍数显著增加,由最低的4.50倍增加到最高的6.04倍。愈伤组织增殖的最适培养基为1/2MS +0.5 mg.L-1 TDZ +1.0 mg.L-12,4-D。将在最适愈伤组织增殖培养基上继代培养约1个月的愈伤组织转移到T2培养基(3.5 g.L-1花宝1号+20 g.L-1红薯+25 g.L-1香蕉+1 g.L-1 tryptone +20 g.L-1蔗糖+3.5 g.L-1 phytagel)上,黑暗培养1个月后,每克鲜重的愈伤组织约诱导出1328.67个PLBs。将诱导出的PLBs转移到新鲜的T2培养基上光照培养1个月,萌发率为90.12%。而将小植株转移到添加1 g.L-1活性炭的1/2MS培养基上,成苗率达到100%。该研究结果成功建立了文心兰的高频愈伤组织诱导及其植株再生体系,为文心兰基因工程育种提供了一个高效、稳定的转化受体系统。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号