首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19218篇
  免费   1335篇
  国内免费   786篇
  2024年   12篇
  2023年   211篇
  2022年   290篇
  2021年   345篇
  2020年   400篇
  2019年   527篇
  2018年   586篇
  2017年   436篇
  2016年   460篇
  2015年   494篇
  2014年   882篇
  2013年   1386篇
  2012年   702篇
  2011年   979篇
  2010年   797篇
  2009年   991篇
  2008年   1045篇
  2007年   954篇
  2006年   1031篇
  2005年   860篇
  2004年   790篇
  2003年   757篇
  2002年   694篇
  2001年   435篇
  2000年   355篇
  1999年   419篇
  1998年   436篇
  1997年   389篇
  1996年   281篇
  1995年   361篇
  1994年   307篇
  1993年   261篇
  1992年   268篇
  1991年   202篇
  1990年   203篇
  1989年   202篇
  1988年   159篇
  1987年   147篇
  1986年   122篇
  1985年   180篇
  1984年   227篇
  1983年   202篇
  1982年   196篇
  1981年   124篇
  1980年   73篇
  1979年   67篇
  1978年   37篇
  1977年   22篇
  1976年   11篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
A method for the detection of the specific binding of 3-methylcholanthrene to rat liver cytosolic proteins is described. The separation of the protein-bound 3-methylcholanthrene from the free 3-methylcholanthrene was achieved using a batch DEAE-cellulose technique. Extraction of the DEAE-cellulose with 0.3 M KCl allowed the selective release and measurement of the amount of protein-bound 3-methylcholanthrene. The assay was optimized for the following parameters: time of incubation with DEAE-cellulose, time required for salt extraction, protein concentration, the concentration of KCl required to elute the specific binding proteins, the amount of DEAE-cellulose required to bind the specific binding proteins, and ligand specificity. The sedimentation properties of those 3-methylcholanthrene-binding proteins which were extracted with salt from DEAE-cellulose were examined on 5 to 20% sucrose gradients; the major binding species sedimented as a broad peak at 4.5 S.  相似文献   
22.
Expression of alternatively spliced mRNA variants at specific stages of development or in specific cells and tissues contributes to the functional diversity of the human genome. Aberrations in alternative splicing were found as a cause or a contributing factor to the development, progression, or maintenance of numerous diseases. The use of antisense oligonucleotides (ON) to modify aberrant expression patterns of alternatively spliced mRNAs is a novel means of potentially controlling such diseases. Oligonucleotides can be designed to repair genetic mutations, to modify genomic sequences in order to compensate for gene deletions, or to modify RNA processing in order to improve the effects of the underlying gene mutation. Steric block ON approach have proven to be effective in experimental model for various diseases. Here, we describe our experience in investigating two strategies for ON delivery: ON conjugation with basic peptides and lipid-based particulate system (lipoplex). Basic peptides or Cell Penetrating Peptides (CPP) such as the TAT-derived peptide appear to circumvent many problems associated with ON and drug delivery. This strategy may represent the next paradigm in our ability to modulate cell function and offers a unique avenue for the treatment of disease. Lipoplexes result from the intimate interaction of ON with cationic lipids leading to ON carrying particles able to be taken up by cells and to release ON in the cytoplasm. We have used as an experimental model the correction of a splicing alteration of the mutated β-globin intron causing thalassemia. Data on cell penetration and efficacy of correction of specific steric block ON delivered either by basic peptides or lipoplex are described. A comparison of the properties of both delivery systems is made respective to the use of this new class of therapeutic molecules.  相似文献   
23.
24.
25.
The injection of α-MSH or of one of its analogues ([Nle4-D.Phe7] α-MSH4–10) reduced, in vivo, the release of two cytokines (IL-1α and TNFα) involved in inflammation. The inflammatory state was induced in BALB/c mice by intraperitoneal injection of a sublethal dose of lipopolysaccharides (LPS). The assay of these cytokines by ELISA showed a reduction of 20% with α-MSH and between 30 and 60% with the α-MSH analogue. The α-MSH or the analogue was administered in one of two ways: intravenously or subcutaneously. The most efficient method seemed to be the subcutaneous one because it improved the activity 10,000 times more than the intravenous method. Moreover, the analogue induced a regression of mortality in the animals treated by the intravenous method. Our results show that α-MSH and one of its analogues inhibit IL-1α and TNFα, and can be used as anti-inflammatory molecules.  相似文献   
26.
Acetylcholine receptor (AChR) purified from human skeletal muscle affinity-alkylated with bromoacetyl[methyl-3H]choline bromide ([3H]BAC) in mildly reducing conditions to yield a specifically radiolabeled polypeptide, Mr 44,000, the alpha-subunit. The binding of [125I]alpha-bungarotoxin to AChR was completely inhibited by affinity-alkylation, indicating that the human AChR's binding site for alpha-bungarotoxin is closely associated with the alpha-subunit's acetylcholine binding site. Structures in the vicinity of the alpha-bungarotoxin binding sites of AChRs from human muscle and Torpedo electric organ were compared by varying the conditions of alkylation. Under optimal conditions of reduction and alkylation, both human and Torpedo AChR incorporated BAC in equivalence to the number of alpha-bungarotoxin binding sites. However, with limited conditions of reduction but sufficient BAC to alkylate 100% of the alpha-bungarotoxin binding sites of human AChR, only 71% of the Torpedo AChR's binding sites were alkylated. In optimal conditions of reduction but with the minimal concentration of BAC that permitted 100% alkylation of the human AChR's alpha-bungarotoxin sites, only 74% of the Torpedo AChR's binding sites were alkylated. These data suggest that the neurotransmitter binding region of human muscle AChR is structurally dissimilar from that of Torpedo electric organ, having a higher binding affinity for BAC and an adjacent disulfide bond that is more readily accessible to reducing agents.  相似文献   
27.
28.
29.
The frog skin host-defense peptide tigerinin-1R (RVCSAIPLPICH.NH2) is insulinotropic both in vitro and in vivo. This study investigates the effects on insulin release and cytotoxicity of changes in cationicity and hydrophobicity produced by selected substitutions of amino acids by l-arginine, l-lysine and l-tryptophan. The [A5W], [L8W] and [I10W] analogs produced a significant (P < 0.01) increase in the rate of insulin release from BRIN-BD11 rat clonal β cells at concentration of 0.01 nM compared with 0.1 nM for tigerinin-1R. The increase in the rate of insulin release produced by a 3 μM concentration of the [S4R], [H12K], and [I10W] analogs from both BRIN-BD11 cells and mouse islets was significantly greater (P < 0.05) than that produced by tigerinin-1R. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM indicating that plasma membrane integrity had been preserved. [A5W] tigerinin-1R was the only analog tested that showed cytotoxic activity against human erythrocytes (LC50 = 265 ± 16 μM) and inhibited growth of Escherichia coli (MIC = 500 μM) and Staphylococcus aureus (MIC = 250 μM). The circular dichroism spectra of tigerinin-1R and [A5W] tigerinin-1R indicate that the peptides adopt a mixture of β-sheet, random coil and reverse β-turn conformations in 50% trifluoroethanol/water and methanol/water. Administration of [S4R] tigerinin-1R (75 nmol/kg body weight) to high-fat fed mice with insulin resistance significantly (P < 0.05) enhanced insulin release and improved glucose tolerance over a 60 min period following an intraperitoneal glucose load. The study supports the claim that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号