首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75128篇
  免费   5276篇
  国内免费   2680篇
  83084篇
  2024年   140篇
  2023年   1248篇
  2022年   1844篇
  2021年   2453篇
  2020年   2424篇
  2019年   3359篇
  2018年   2927篇
  2017年   2121篇
  2016年   2083篇
  2015年   2595篇
  2014年   4865篇
  2013年   6005篇
  2012年   3729篇
  2011年   4776篇
  2010年   3633篇
  2009年   3919篇
  2008年   3996篇
  2007年   4024篇
  2006年   3556篇
  2005年   3146篇
  2004年   2821篇
  2003年   2254篇
  2002年   2004篇
  2001年   1328篇
  2000年   1016篇
  1999年   1071篇
  1998年   1052篇
  1997年   818篇
  1996年   754篇
  1995年   701篇
  1994年   646篇
  1993年   510篇
  1992年   514篇
  1991年   421篇
  1990年   354篇
  1989年   288篇
  1988年   258篇
  1987年   216篇
  1986年   192篇
  1985年   292篇
  1984年   485篇
  1983年   340篇
  1982年   363篇
  1981年   287篇
  1980年   220篇
  1979年   208篇
  1978年   187篇
  1977年   152篇
  1976年   124篇
  1975年   109篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The present study was aimed to identify the active anti-glycation constituent from the leaves of Sesbania grandiflora. Characterization of the active constituent resulted in the identification of hydroxy methoxy benzaldehyde (HMB). The potential of HMB as anti-glycation lead was analyzed by fluorescence spectroscopy, fluorescence microscopy, scanning electron microscopy (SEM) and molecular interaction studies. Our results suggested that HMB inhibited formation of early (HbA1c) and advanced glycation end products (AGEs). The amyloid-like fibrillation in hemoglobin was also inhibited by HMB. SEM images indicated the protective effect against the formation of acanthocytes. Molecular docking studies showed that HMB was interacting with hemoglobin through hydrogen bonds with Arg141, Tyr140, and Thr137. Our findings suggest that HMB could be a better anti-glycation lead molecule towards novel AGEs inhibitors.  相似文献   
992.
PHLDA1 (pleckstrin homology-like domain, family A, member 1) is a multifunctional protein that plays distinct roles in several biological processes including cell death and therefore its altered expression has been identified in different types of cancer. Progressively loss of PHLDA1 was found in primary and metastatic melanoma while its overexpression was reported in intestinal and pancreatic tumors. Previous work from our group showed that negative expression of PHLDA1 protein was a strong predictor of poor prognosis for breast cancer disease. However, the function of PHLDA1 in mammary epithelial cells and the tumorigenic process of the breast is unclear. To dissect PHLDA1 role in human breast epithelial cells, we generated a clone of MCF10A cells with stable knockdown of PHLDA1 and performed functional studies. To achieve reduced PHLDA1 expression we used shRNA plasmid transfection and then changes in cell morphology and biological behavior were assessed. We found that PHLDA1 downregulation induced marked morphological alterations in MCF10A cells, such as changes in cell-to-cell adhesion pattern and cytoskeleton reorganization. Regarding cell behavior, MCF10A cells with reduced expression of PHLDA1 showed higher proliferative rate and migration ability in comparison with control cells. We also found that MCF10A cells with PHLDA1 knockdown acquired invasive properties, as evaluated by transwell Matrigel invasion assay and showed enhanced colony-forming ability and irregular growth in low attachment condition. Altogether, our results indicate that PHLDA1 downregulation in MCF10A cells leads to morphological changes and a more aggressive behavior.  相似文献   
993.
Methylparabens (MP) are widely used as preservatives in cosmetics, pharmacy, and food industry. Although acute toxicity studies in animals indicated that parabens are not significantly toxic, the effects of chronic exposure under sublethal doses are still unknown and the number of related studies is limited. Our aim was to evaluate the effects of MP on the development of zebrafish embryos focusing on development, locomotor activity, oxidant–antioxidant status, apoptosis, and ccnd1 and myca expressions. The expressions of ccnd1 and myca were determined by RT‐PCR. Lipid peroxidation (LPO), nitric oxide (NO), and glutathione‐S‐transferase (GST) activities were determined spectrophotometrically. Apoptosis was determined using acridine orange staining. Locomotor activity was measured using touch‐evoked movement test. MP exposure increased malformations, LPO, apoptosis, ccnd1 and myca expressions, and decreased GST activities and NO levels compared with the control group. Our findings will lead to further understanding of the mechanism of MP toxicity, and merit further research.  相似文献   
994.
995.
The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft‐L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O‐acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft‐L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft‐L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre‐treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.  相似文献   
996.
997.
Atp1a3 is the Na‐pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3‐deficient heterozygous mice (Atp1a3+/?) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3+/? and compared the rank and hierarchy structure between Atp1a3+/? and wild‐type mice within a housing cage using the round‐robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3+/? than wild‐type mice, and Atp1a3+/? approached Atp1a3+/? mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3+/? group than in the wild‐type group, while no difference was observed in the mixed‐genotype housing condition. (3) Hierarchy formation was not different between Atp1a3+/? and wild type. (4) Atp1a3+/? showed a lower rank in the mixed‐genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3+/? showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy.  相似文献   
998.
999.
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34‐positive/c‐kit‐negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c‐kit‐positive/CD34‐negative/platelet‐derived growth factor receptor α (PDGFRα)‐negative interstitial cells of Cajal (ICC) and the PDGFRα‐positive/c‐kit‐negative fibroblast‐like cells (FLC). As TC display the same features and locations of the PDGFRα‐positive cells, we investigated whether TC and PDGFRα‐positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c‐kit and CD34/c‐kit double immunolabelling was performed in full‐thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34‐positive. TC formed a three‐dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c‐kit‐positive and CD34/PDGFRα‐negative. In conclusion, in the human GI tract the TC are PDGFRα‐positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region‐specific roles.  相似文献   
1000.
Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase–encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild‐type plants, an effect that was reproduced in our 2‐year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase‐encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号