首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7478篇
  免费   191篇
  国内免费   270篇
  2024年   74篇
  2023年   403篇
  2022年   278篇
  2021年   338篇
  2020年   435篇
  2019年   513篇
  2018年   499篇
  2017年   370篇
  2016年   428篇
  2015年   271篇
  2014年   556篇
  2013年   1067篇
  2012年   102篇
  2011年   136篇
  2010年   136篇
  2009年   135篇
  2008年   147篇
  2007年   147篇
  2006年   151篇
  2005年   177篇
  2004年   131篇
  2003年   129篇
  2002年   131篇
  2001年   80篇
  2000年   87篇
  1999年   72篇
  1998年   76篇
  1997年   66篇
  1996年   54篇
  1995年   46篇
  1994年   49篇
  1993年   44篇
  1992年   38篇
  1991年   34篇
  1990年   25篇
  1989年   41篇
  1988年   37篇
  1987年   11篇
  1986年   25篇
  1985年   44篇
  1984年   57篇
  1983年   50篇
  1982年   45篇
  1981年   41篇
  1980年   41篇
  1979年   35篇
  1978年   27篇
  1977年   27篇
  1976年   9篇
  1974年   9篇
排序方式: 共有7939条查询结果,搜索用时 15 毫秒
991.
The DNA of all living cells undergoes continuous structural and chemical alteration, which may be derived from exogenous sources, or endogenous, metabolic pathways, such as cellular respiration, replication and DNA demethylation. It has been estimated that approximately 70,000 DNA lesions may be generated per day in a single cell, and this has been linked to a wide variety of diseases, including cancer. However, it is puzzling why potentially mutagenic DNA modifications, occurring at a similar level in different organs/tissue, may lead to organ/tissue specific cancers, or indeed non-malignant disease – what is the basis for this differential response? We suggest that it is perhaps the precise location of damage, within the genome, that is a key factor. Finally, we draw attention to the requirement for reliable methods for identification and quantification of DNA adducts/modifications, and stress the need for these assays to be fully validated. Once these prerequisites are satisfied, measurement of DNA modifications may be helpful as a clinical parameter for treatment monitoring, risk group identification and development of prevention strategies.  相似文献   
992.
3′–nucleases/nucleotidases of the S1–P1 family (EC 3.1.30.1) are single–strand–specific or non-specific zinc–dependent phosphoesterases present in plants, fungi, protozoan parasites, and in some bacteria. They participate in a wide variety of biological processes and their current biotechnological applications rely on their single–strand preference, nucleotide non-specificity, a broad range of catalytic conditions and high stability. We summarize the present and potential utilization of these enzymes in biotechnology and medicine in the context of their biochemical and structure–function properties. Explanation of unanswered questions for bacterial and trypanosomatid representatives could facilitate development of emerging applications in medicine.  相似文献   
993.
Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of these metabolites inhibit cell division and can therefore be used for the treatment of cancer, e.g. the mitostatic drug paclitaxel (Taxol). The ability of plants to produce medicines targeting cancer has expanded due to the advent of genetic engineering, particularly in recent years because of the development of gene editing systems such as the CRISPR/Cas9 platform. These technologies allow the introduction of genetic modifications that facilitate the accumulation of native pharmaceutically-active substances, and even the production heterologous recombinant proteins, including human antibodies, lectins and vaccine candidates. Here we discuss the anti-cancer agents that are produced by plants naturally or following genetic modification, and the potential of these products to supply modern healthcare systems. Special emphasis will be put on proteinaceous anti-cancer agents, which can exhibit an improved selectivity and reduced side effects compared to small molecule-based drugs.  相似文献   
994.
995.
996.
Computational protein design is still a challenge for advancing structure‐function relationships. While recent advances in this field are promising, more information for genuine predictions is needed. Here, we discuss different approaches applied to install novel glutamine (Gln) binding into the Lysine/Arginine/Ornithine binding protein (LAOBP) from Salmonella typhimurium. We studied the ligand binding behavior of two mutants: a binding pocket grafting design based on a structural superposition of LAOBP to the Gln binding protein QBP from Escherichia coli and a design based on statistical coupled positions. The latter showed the ability to bind Gln even though the protein was not very stable. Comparison of both approaches highlighted a nonconservative shared point mutation between LAOBP_graft and LAOBP_sca. This context dependent L117K mutation in LAOBP turned out to be sufficient for introducing Gln binding, as confirmed by different experimental techniques. Moreover, the crystal structure of LAOBP_L117K in complex with its ligand is reported.  相似文献   
997.
We have evaluated the antischistosomal activity of synthetic dihydrobenzofuran neolignans (DBNs) derived from (±)‐trans‐dehydrodicoumaric acid dimethyl ester ( 1 ) and (±)‐trans‐dehydrodiferulic acid dimethyl ester ( 2 ) against adult Schistosoma mansoni worms in vitro. Compound 4 ((±)‐trans‐4‐O‐acetyldehydrodiferulic acid dimethyl ester) displayed the most promising activity; at 200 μm , it kills 100 ± 0% of worms after 24 h, which resembles the result achieved with praziquantel (positive control) at 1.56 μm . The hydrogenation of the double bond between C7′ and C8′, the introduction of an additional methyl group at C3′, and a double bond between C7 and C8 decreased the schistosomicidal activity of DBNs. On the other hand, the presence of the acetoxy group at C4 played an interesting role in this activity. These results demonstrated the interesting schistosomicidal potential of DBNs, which could be further exploited.  相似文献   
998.
In this paper, a one-prey-n-predator impulsive reaction-diffusion periodic predator–prey system with ratio-dependent functional response is investigated. On the basis of the upper and lower solution method and comparison theory of differential equation, sufficient conditions on the ultimate boundedness and permanence of the predator–prey system are established. By constructing an appropriate auxiliary function, the conditions for the existence of a unique globally stable positive periodic solution are also obtained. Examples and numerical simulations are presented to verify the feasibility of our results. A discussion is conducted at the end.  相似文献   
999.
Background aims. After a myocardial infarction (MI) atherosclerosis is accelerated leading to destabilization of the atherosclerotic plaque. mesenchymal stromal cells are a promising therapeutic option for atherosclerosis. Previously, we demonstrated a novel stem cell delivery technique, with adipose stem cells coupled to microbubbles (i.e., StemBells) as therapy after MI. In this study, we aim to investigate the effect of StemBell therapy on atherosclerotic plaques in an atherosclerotic mouse model after MI. Methods. MI was induced in atherosclerotic Apolipoprotein E–deficient mice that were fed a high-fat Western diet. Six days post-MI, the mice received either 5?×?105/100 µL StemBells or vehicle intravenously. The effects of StemBell treatment on the size and stability of aortic root atherosclerotic plaques and the infarcted heart were determined 28 days post-MI via (immuno)histological analyses. Moreover, monocyte subtypes and lipids in the blood were studied. Results. StemBell treatment resulted in significantly increased cap thickness, decreased intra-plaque macrophage density and increased percentage of intra-plaque anti-inflammatory macrophages and chemokines, without affecting plaque size and serum cholesterol/triglycerides. Furthermore, StemBell treatment significantly increased the percentage of anti-inflammatory macrophages within the infarcted myocardium but did not affect cardiac function nor infarct size. Finally, also the average percentage of anti-inflammatory monocytes in the circulation was increased after StemBell therapy. Discussion. StemBell therapy increased cap thickness and decreased intra-plaque inflammation after MI, indicative of stabilized atherosclerotic plaque. It also induced a shift of circulating monocytes and intra-plaque and intra-cardiac macrophages towards anti-inflammatory phenotypes. Hence, StemBell therapy may be a therapeutic option to prevent atherosclerosis acceleration after MI.  相似文献   
1000.

Background

Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor. OS patients have not seen any major therapeutic progress in the last 30 years, in particular in the case of metastatic disease, which requires new therapeutic strategies. The pro-apoptotic cytokine Tumor necrosis factor (TNF)–Related Apoptosis Inducing Ligand (TRAIL) can selectively kill tumor cells while sparing normal cells, making it a promising therapeutic tool in several types of cancer. However, many OS cell lines appear resistant to recombinant human (rh)TRAIL-induced apoptosis. We, therefore, hypothesized that TRAIL presentation at the membrane level of carrier cells might overcome this resistance and trigger apoptosis.

Methods

To address this, human adipose mesenchymal stromal cells (MSCs) transfected in a stable manner to express membrane-bound full-length human TRAIL (mbTRAIL) were co-cultured with several human OS cell lines.

Results

This induced apoptosis by cell-to-cell contact even in cell lines initially resistant to rhTRAIL. In contrast, mbTRAIL delivered by MSCs was not able to counteract tumor progression in this OS orthotopic model.

Discussion

This was partly due to the fact that MSCs showed a potential to support tumor development. Moreover, the expression of mbTRAIL did not show caspase activation in adjacent tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号