首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3218篇
  免费   317篇
  国内免费   164篇
  3699篇
  2024年   25篇
  2023年   111篇
  2022年   96篇
  2021年   164篇
  2020年   154篇
  2019年   156篇
  2018年   123篇
  2017年   119篇
  2016年   113篇
  2015年   142篇
  2014年   177篇
  2013年   231篇
  2012年   132篇
  2011年   130篇
  2010年   110篇
  2009年   102篇
  2008年   134篇
  2007年   128篇
  2006年   106篇
  2005年   89篇
  2004年   101篇
  2003年   115篇
  2002年   107篇
  2001年   88篇
  2000年   61篇
  1999年   57篇
  1998年   55篇
  1997年   46篇
  1996年   60篇
  1995年   43篇
  1994年   52篇
  1993年   59篇
  1992年   34篇
  1991年   33篇
  1990年   33篇
  1989年   23篇
  1988年   29篇
  1987年   20篇
  1986年   16篇
  1985年   27篇
  1984年   17篇
  1983年   12篇
  1982年   16篇
  1981年   17篇
  1980年   15篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1973年   2篇
  1967年   2篇
排序方式: 共有3699条查询结果,搜索用时 0 毫秒
21.
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.  相似文献   
22.
23.
Although recent evidence has shown that hepatocyte senescence plays a crucial role in the pathogenesis and development of non-alcoholic fatty liver disease (NAFLD), the mechanism is still not clear. The purpose of this study was to investigate the signal transduction pathways involved in the senescence of hepatocyte, in order to provide a potential strategy for blocking the process of NAFLD. The results confirmed that hepatocyte senescence occurred in HFD-fed Golden hamsters and PA-treated LO2 cells as manifested by increased levels of senescence marker SA-β-gal, p16 and p21, heterochromatin marker H3K9me3, DNA damage marker γ-H2AX and decreased activity of telomerase. Further studies demonstrated that iron overload could promote the senescence of hepatocyte, whereas the overexpression of Yes-associated protein (YAP) could blunt iron overload and alleviate the senescence of hepatocyte. Of importance, depression of lncRNA MAYA (MAYA) reduced iron overload and cellular senescence via promotion of YAP in PA-treated hepatocytes. These effects were further supported by in vivo experiments. In conclusion, these data suggested that inhibition of MAYA could up-regulate YAP, which might repress hepatocyte senescence through modulating iron overload. In addition, these findings provided a promising option for heading off the development of NAFLD by abrogating hepatocyte senescence.  相似文献   
24.
The life-long homeostasis of memory CD8(+) T cells as well as persistent viral infections have been shown to facilitate the accumulation of highly differentiated CD8(+) CD28(-) T cells, a phenomenon that has been associated with an impaired immune function in humans. However, the molecular mechanisms regulating homeostasis of CD8(+) CD28(-) T cells have not yet been elucidated. In this study, we demonstrate that the miR-23~24~27 cluster is up-regulated during post-thymic CD8(+) T-cell differentiation in humans. The increased expression of miR-24 in CD8(+) CD28(-) T cells is associated with decreased expression of the histone variant H2AX, a protein that plays a key role in the DNA damage response (DDR). Following treatment with the classic chemotherapeutic agent etoposide, a topoisomerase II inhibitor, apoptosis was increased in CD8(+) CD28(-) when compared to CD8(+) CD28(+) T cells and correlated with an impaired DDR in this cell type. The reduced capacity of CD8(+) CD28(-) T cell to repair DNA was characterized by the automated fluorimetric analysis of DNA unwinding (FADU) assay as well as by decreased phosphorylation of H2AX at Ser139, of ATM at Ser1981, and of p53 at Ser15. Interleukin (IL)-15 could prevent etoposide-mediated apoptosis of CD8(+) CD28(-) T cells, suggesting a role for IL-15 in the survival and the age-dependent accumulation of CD8(+) CD28(-) T cells in humans.  相似文献   
25.
26.
We have recently shown in non‐human primates that caloric restriction (CR) initiated during adulthood can delay T‐cell aging and preserve naïve CD8 and CD4 T cells into advanced age. An important question is whether CR can be initiated at any time in life, and whether age at the time of onset would modulate the beneficial effects of CR. In the current study, we evaluated the impact of CR started before puberty or during advanced age on T‐cell senescence and compared it to the effects of CR started in early adulthood. Our data demonstrate that the beneficial effects of adult‐onset CR on T‐cell aging were lost by both early and late CR onset. In fact, some of our results suggest that inappropriate initiation of CR may be harmful to the maintenance of T‐cell function. This suggests that there may be an optimal window during adulthood where CR can delay immune senescence and improve correlates of immunity in primates.  相似文献   
27.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   
28.
29.
 Levels of indole-3-acetic acid (IAA) were determined in needles from silver fir (Abies alba Mill.) trees in the northern Black Forest. IAA was quantified by gas chromatography (GC) as 1-heptafluorobutyryl-IAA-methylester (HFB-IAA-ME) using electron capture detection. Prior to GC analysis, extensive purification of needle extracts was performed employing two HPLC steps. Peak identity of HFB-IAA-ME was confirmed by combined gas chromatography-mass spectrometry in selected samples. Levels of IAA in needles belonging to different needle age-classes exhibited a cyclic seasonal pattern with highest concentrations in winter and lowest levels in spring when bud-break occurred. Such a cyclic seasonal pattern of IAA levels was also observed in needles from declining fir trees or fir trees suffering from a strong sulfur impact (S-impact) in the field due to a local SO2 source. Levels of IAA increased with increasing needle age. This age dependency of IAA concentrations was most pronounced in late autumn when IAA levels were high and nearly disappeared in spring when IAA levels reached their minimum. In needles from declining fir trees or fir trees suffering from a strong S-impact in the field, IAA levels hardly increased with increasing needle age. It is suggested that in healthy trees high levels of IAA protect older needles from abscission and that the considerable losses of older needles of declining fir trees or of fir trees under S-impact are a consequence of the low levels of IAA found in older needles of such trees. Received: 4 May 1995 / Accepted: 29 August 1995  相似文献   
30.
1. AMPA receptor potentiators (ARPs) exhibit antidepressant-like activity in preclinical tests (for example, the forced swim test) that are highly predictive of efficacy in humans. Unlike most currently used antidepressants, ARPs do not elevate extracellular levels of biogenic amines (e.g., 5HT, NE) in prefrontal cortex at doses that are active in the forced swim test.2. The present series of experiments examined the effects of combining the ARP, LY 392098, with biogenic amine-based antidepressants in the forced swim test. Male, NIH Swiss mice were placed in a cylinder of water and observed for attempted escape behaviors and immobility.3. LY 392098 dose-dependently decreased immobility as did a range of classical antidepressants. At doses of LY 392098 below those that decreased immobility, this compound significantly increased the potency with which fluoxetine and citalopram (SSRI antidepressants), imipramine (tricyclic antidepressant), duoxetine (norepinephrine/serotonin uptake blocker), nisoxetine (norepinephrine uptake inhibitor), and rolipram (PDE4 inhibitor) decreased immobility in the forced swim test with potency shifts upward of 5-fold (fluoxetine, imipramine, and rolipram). Likewise, ineffective doses of the traditional antidepressants potentiated the effects LY 392098 with shifts in the dose-effect functions that were 10-fold or more for citalopram, fluoxetine, imipramine, and duloxetine.4. Combined with other evidence for a role of AMPA receptors in the efficacy of antidepressants, the current data suggest that the addition of an ARP may augment the activity and perhaps the onset of the therapeutic effects of biogenic amine and second messenger-based antidepressants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号