首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   26篇
  国内免费   22篇
  2024年   2篇
  2023年   10篇
  2022年   10篇
  2021年   22篇
  2020年   18篇
  2019年   21篇
  2018年   17篇
  2017年   14篇
  2016年   15篇
  2015年   10篇
  2014年   20篇
  2013年   37篇
  2012年   13篇
  2011年   11篇
  2010年   18篇
  2009年   21篇
  2008年   26篇
  2007年   31篇
  2006年   14篇
  2005年   20篇
  2004年   9篇
  2003年   10篇
  2002年   15篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有455条查询结果,搜索用时 421 毫秒
431.
Mucuna (Fabaceae) species possess gullet-type flowers that open explosively and which are thought to be specifically adapted for bat- or bird-pollination. However, recent studies have shown that non-flying mammals are also important pollinators of this genus in Asia. Here we report on the pollination system of Mucuna championii (endemic in southeast China) in Hong Kong. As is typical for the genus, explosive opening is essential for fruit set, but flowers are unable to open in the absence of manipulation by an effective pollinator. Camera trap surveys of three individuals revealed both chestnut spiny rats (Niviventer fulvescens) and short-nosed fruit bats (Cynopterus sphinx) to be capable of triggering explosive opening. The number of flowers opened by each species did not differ significantly, and both removed most pollen grains from the flowers they visited, but either species visited different individuals. Sucrose-rich nectar was secreted by flowers throughout the day. Our results reveal that M. championii can be pollinated by both rats and bats, with this representing only the second report of rat-pollination in tropical Asia. The sympatric M. birdwoodiana often occurs in close proximity to M. championii and has an overlapping flowering season, suggesting that pollinator segregation may have played a role in shaping the evolutionary ecology of these two species.  相似文献   
432.
Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean‐centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved 13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird‐ and bat‐pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species‐rich clades.  相似文献   
433.
Evolutionary processes can be influenced by several factors, such as geographic isolation, environmental selection, and sensory variation. For most nocturnal bats, echolocation is the primary sensory system used to prey and communicate, and plays important roles in chiropteran diversification and evolution. Understanding the relative contribution of geography, the environment, and this sensory system to population genetic divergence can elucidate the processes involved in bat incipient speciation and evolution. In this study, we collected spatial and environmental information, echolocation calls, as well as the previously published genetic data (six microsatellite loci and the mitochondrial cytochrome b gene) of widely distributed Rhinolophus episcopus populations to test three hypotheses for nuclear and mitochondrial divergence (isolation by distance, isolation by environment, and isolation by sensory variation) and unveil the factors that drive intraspecific genetic differentiation. The moderate level of nuclear differentiation was correlated with geographic/spatial distance and acoustic variation, whereas the relatively high level of mitochondrial differentiation was mainly associated with acoustic divergence. No significant correlation was observed between genetic divergence and environmental variables. Among the three factors, acoustic divergence explained the highest percentage of both nuclear and mitochondrial divergence. Thus, our results indicate that sensory variation may have played important roles in driving population isolation early in bat speciation, which is consistent with the hypothesis of isolation by sensory variation. Our study emphasizes the need to consider more factors, especially sensory traits, and combine multiple statistical methods in landscape genetic studies to test their potential contributions to driving population divergence.  相似文献   
434.
Investigators rely on brood surveys to estimate annual fecundity of game birds. However, investigators often do not account for factors that influence brood detection probability nor rarely document how much females and their broods are disturbed (flush rates) during surveys, which could lead to biased survival estimates. We used 45 radio‐tagged female Greater Sage‐Grouse (Centrocercus urophasianus) with broods to compare detection probabilities and document disturbance among four survey methods to allow future investigators to select the method that best meets their objectives. These methods included daytime flush, daytime visual, nocturnal spotlight, and fecal surveys at nocturnal roost sites, with the latter being a novel method. We used Cormack–Jolly–Seber (CJS) models to compare detection probability and daily survival estimates for visual and fecal surveys of broods 0–47 d post‐hatch and a double‐survey approach to compare detection probabilities among flush, fecal, and spotlight surveys ~42 d post‐hatch when investigators often determine brood fate. From CJS models, detection probability for visual surveys increased with brood age (0.618–0.881), whereas detection probability for fecal surveys did not (0.748). Daily survival probability estimates increased with brood age and differed annually based on fecal surveys (2016: 0.978–1.000 and 2017: 0.839–0.998). We detected age‐specific daily survival probability with visual surveys (0.956–0.997), but not annual differences. Based on the double‐survey approach, detection probability was high (0.857–1.000) for all methods. We flushed ~310–750% fewer females and broods during fecal and spotlight surveys than during both types of daytime surveys. Our results highlight the need to account for detection probabilities among methods and document disturbance to hens and broods that can help investigators design surveys to minimize impacts to birds. Furthermore, our result suggest that actions to improve brood survival during the first week post‐hatch may improve local recruitment.  相似文献   
435.
ABSTRACT Declining bat populations and increasing demands on forest resources have prompted researchers to investigate tree roost selection of forest bats. Few studies, however, have investigated different spatial scales and landscape pattern as criteria for selection of tree roosts. In 1999 and 2000, we radiotracked 23 eastern red bats (Lasiurus borealis) to 64 day roosts. Using univariate and multivariate comparisons, we tested roost tree variables with random tree data at 3 circular spatial scales: roost tree, plot, and landscape. We found 15 variables that were entered in a stepwise discriminant analysis to best differentiate between the roost and random samples; 11 (73.3%) were landscape variables measured with a geographic information system. On average (x̄ ± SE), red bats roosted in deciduous trees (42.0 ± 2.1 cm dbh) that were located in plots with more (3.1 ± 0.1 m2) basal area, higher (84.0 ± 1.3) percentage of canopy closure, and lower (27.2 ± 2.2) percentage of groundcover than random plots. At the landscape scale (by percent magnitude), red bat buffers (1,000-m-radius circle) had significantly less development (81.6%), less feeding operations (70.4%), more deciduous (52.9%) and pine forest (63.8%), and fewer local roads (5.4%) but more trails (94.1%), open water (61.4%), wetland areas (80.4%), and stream areas (63.1%) than random buffers. Red bat roost trees were significantly closer (χ2 = 22.0088, df = 1, P < 0.001) to trails (106.2 ± 13.3 m) than to streams (279.4 ± 28.5 m). Our results suggest that red bats in our study area select roosts in mature riparian forests near trails, open water, and wetlands. The high percentage of landscape values in the discriminant analysis lends support to using landscape metrics as an investigative technique of resource selection. We recommend that managers consider landscape factors when protecting red bat day-roost habitat.  相似文献   
436.
437.
438.
439.
440.
Abstract

A juvenile female Japanese pipistrelle (Pipistrellus javanicus abramus) wap found dead on 9 December 1981 in Hamilton, New Zealand, in a package of car parts from Japan. This is apparently the first accidental importation of an exotic bat to New Zealand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号