首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1414篇
  免费   81篇
  国内免费   53篇
  2023年   17篇
  2022年   23篇
  2021年   25篇
  2020年   26篇
  2019年   29篇
  2018年   28篇
  2017年   28篇
  2016年   29篇
  2015年   29篇
  2014年   87篇
  2013年   100篇
  2012年   70篇
  2011年   65篇
  2010年   53篇
  2009年   55篇
  2008年   61篇
  2007年   74篇
  2006年   48篇
  2005年   68篇
  2004年   36篇
  2003年   34篇
  2002年   37篇
  2001年   21篇
  2000年   16篇
  1999年   22篇
  1998年   26篇
  1997年   36篇
  1996年   33篇
  1995年   28篇
  1994年   24篇
  1993年   22篇
  1992年   30篇
  1991年   15篇
  1990年   21篇
  1989年   18篇
  1988年   20篇
  1987年   12篇
  1986年   22篇
  1985年   29篇
  1984年   33篇
  1983年   8篇
  1982年   29篇
  1981年   11篇
  1980年   11篇
  1979年   12篇
  1978年   5篇
  1977年   5篇
  1975年   5篇
  1974年   3篇
  1972年   2篇
排序方式: 共有1548条查询结果,搜索用时 614 毫秒
91.
The parasphenoid is located in the cranium of many vertebrates. When present, it is always an unpaired, dermal bone. While most basal vertebrates have a parasphenoid, most placental mammals lack this element and have an unpaired, dermal vomer in a similar position (i.e. associated with the same bones) and with a similar function. As such, the parasphenoid and the vomer were considered homologous by some early twentieth century researchers. However, others questioned this homology based on comparisons between mammals and reptiles. Here we investigate the parasphenoid bone across the major vertebrate lineages (amphibians, reptiles, mammals and teleosts) including both developmental and evolutionary aspects, which until now have not been considered together. We find that within all the major vertebrate lineages there are organisms that possess a parasphenoid and a vomer, while the parasphenoid is absent within caecilians and most placental mammals. Based on our assessment and Patterson's conjunction tests, we conclude that the non‐mammalian parasphenoid and the vomer in mammals cannot be considered homologous. Additionally, the parasphenoid is likely homologous between sarcopterygian and actinopterygian lineages. This research attempts to resolve the issue of the parasphenoid homology and highlights where gaps in our knowledge are still present.  相似文献   
92.
To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca2+/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials. Moreover, P-TandeMBP served as an efficient substrate for PPM family phosphatases (PPM1A, PPM1B, PPM1D, PPM1F, PPM1G, PPM1H, PPM1K, and PPM1M) and PPP family phosphatase PP5. Various phosphatase activities were also detected with high sensitivity in gel filtration fractions from mouse brain using P-TandeMBP. These results indicate that P-TandeMBP might be a powerful tool for the detection of protein phosphatase activities.  相似文献   
93.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   
94.
Snakes exhibit a diverse array of body shapes despite their characteristically simplified morphology. The most extreme shape changes along the precloacal axis are seen in fully aquatic sea snakes (Hydrophiinae): “microcephalic” sea snakes have tiny heads and dramatically reduced forebody girths that can be less than a third of the hindbody girth. This morphology has evolved repeatedly in sea snakes that specialize in hunting eels in burrows, but its developmental basis has not previously been examined. Here, we infer the developmental mechanisms underlying body shape changes in sea snakes by examining evolutionary patterns of changes in vertebral number and postnatal ontogenetic growth. Our results show that microcephalic species develop their characteristic shape via changes in both the embryonic and postnatal stages. Ontogenetic changes cause the hindbodies of microcephalic species to reach greater sizes relative to their forebodies in adulthood, suggesting heterochronic shifts that may be linked to homeotic effects (axial regionalization). However, microcephalic species also have greater numbers of vertebrae, especially in their forebodies, indicating that somitogenetic effects also contribute to evolutionary changes in body shape. Our findings highlight sea snakes as an excellent system for studying the development of segment number and regional identity in the snake precloacal axial skeleton.  相似文献   
95.
Chromosome number variations play an important role in the genus Medicago. In addition to polyploidy there are cases of dysploidy as evidenced by two basic numbers, x = 8 and x = 7, the latter limited to five annual species having 2n = 14. Annuals are diploid with the exception of Medicago scutellata and Medicago rugosa which have 2n = 30 and are considered the result of crosses between the 2n = 16 and 2n = 14 species. However, this hypothesis has never been tested. This study was carried out to investigate the 2n = 14 and 2n = 30 karyotypes and verify the allopolyploid origin of M. scutellata and M. rugosa. Fluorescence in situ hybridization (FISH) of rDNA probes and genomic in situ hybridization (GISH) were performed. FISH showed that all five diploids with 2n = 14 have one pair of 45S and one pair of 5S rDNA sites. M. scutellata displayed four sites of 45S and four sites of 5S rDNA, while in M. rugosa only one pair of each of these sites was found. GISH did not produce signals useful to identify the presumed progenitors with 14 chromosomes. This result suggests alternative evolutionary pathways, such as the formation of tetraploids (2n = 32) and subsequent dysploidy events leading to the chromosome number reduction.  相似文献   
96.
97.
98.
犬齿窝是包括现代人类在内的许多人族成员面部骨骼的重要性状,但在分类学上的意义仍存在争议。有学者认为该性状是一个发生于基础面形的近祖性状,除了一些例外,在灭绝和现生的大猿及人属中都存在。另有学者认为,犬齿窝是仅存在于智人及其直系祖先的衍生性状,在发育上与颧齿槽突嵴有关。这种关系并非总是成立,在智人中存在着明显的差异:弧型颧齿槽突嵴和直斜型颧齿槽突嵴与犬齿窝有时共存,有时不共存。我们由此推测,犬齿窝的发生和形态与上颌窦的前部发育有关,颧齿槽突嵴的形态与鼻窦的侧面发育有关。在人类演化的过程中,犬齿窝经历了不同的变形,比如上颌沟(如南方古猿非洲种、傍人粗壮种)、上颌小窝(如傍人粗壮种)、上颌沟(如匠人)或犬齿窝缺如(如傍人埃塞俄比亚种、傍人鲍氏种、肯尼亚扁脸人、人属鲁道夫种)。犬齿窝消失的原因各类群并不相同,如中新世和早更新世人属以及中更新世人属(如人属海德堡种/人属罗得西亚种、人属尼安德特种)。人属罗得西亚种具有弱化的犬齿窝,不具备演化为智人的可能,因此被排除在智人的演化支之外。  相似文献   
99.
I made observations of a central California population of Wilson''s Warbler, Cardellina pusilla, after July 1 over 10 breeding seasons. I sighted males in definitive prebasic molt from July 4 (in 2007) to September 1 (in 1999). Most territorial males molted on their breeding territories, and individual molt lasted up to 46 days. Following prebasic molt, territorial males engaged in subdued “post‐molt singing,” which lasted about 7 days in some males, and which I first heard on August 13 (in 2004) and last heard on September 6 (in 1999). I sighted no female in definitive prebasic molt, or in fresh basic plumage, during the study. Of 13 females sighted ≥ July 21, 11 were in late breeding season uniparental brood care, and I could not rule out late brood care for the other two. Most, and possibly all, females not engaged in late season uniparental brood care apparently vacated their breeding territories before July 21. This departure was much earlier than for resident males, the last of which I sighted on September 10 (in 1999). Early‐departing females presumably underwent prebasic molt after July 21 at locations not known. Remaining late‐nesting females must have molted much later than resident males and likely later than early‐departing females, and at locations unknown. I last sighted two uniparental brood‐tending females, still in worn plumage, on August 26 and 29, respectively. Two unique findings of this study are a male/female difference in location of prebasic molt, and a likely dichotomy of prebasic molt timing between females leaving their breeding territories early and those remaining in uniparental brood care. Another finding, post‐molt singing in most and possible all territorial males, is a largely unrecognized behavior, but one previously reported in several passerine species. Post‐molt singing may reliably indicate completion of prebasic molt.  相似文献   
100.
高福 《生物工程学报》2022,38(11):4012-4018
作为国家级研究机构,中国科学院各级研究所一直以来的重要使命就是心系国家事、肩扛国家责、永做国家人,站在国际科学发展前沿的高度,紧抓国家社会发展中重大需求的科学与技术问题,布局研究所及其项目和吸引人才。本文以个人视角,回顾了2004年回国接任微生物研究所所长后,开始思考工业生物技术的发展,布局天津研发中心,经过多年努力,在院党组的领导与支持下,中国科学院天津工业生物技术研究所建成,已经取得了重要成果;还回顾了建所初衷和早期成长发展历程以及与微生物研究所的关系。通过思考科学、技术、工程(医学)之间的关系,提出从事基础科学研究的科研人员进行转化应用的路径,即“想法-假说-实验-概念-论文-技术-样品-产品-商品”的9层逻辑关系,希望科学家能够做出解决实际问题的实用工作,并展望了未来工业生物技术的远景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号