首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1407篇
  免费   428篇
  国内免费   41篇
  1876篇
  2024年   2篇
  2023年   11篇
  2022年   24篇
  2021年   69篇
  2020年   123篇
  2019年   143篇
  2018年   146篇
  2017年   122篇
  2016年   119篇
  2015年   119篇
  2014年   135篇
  2013年   155篇
  2012年   105篇
  2011年   105篇
  2010年   88篇
  2009年   65篇
  2008年   83篇
  2007年   47篇
  2006年   41篇
  2005年   37篇
  2004年   32篇
  2003年   27篇
  2002年   21篇
  2001年   10篇
  2000年   16篇
  1999年   8篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1972年   1篇
排序方式: 共有1876条查询结果,搜索用时 15 毫秒
91.
Arbuscular mycorrhizal (AM) fungi are known to exhibit high intra‐organism genetic variation. However, information about intra‐ vs. interspecific variation among the genes commonly used in diversity surveys is limited. Here, the nuclear small subunit (SSU) rRNA gene, internal transcribed spacer (ITS) region and large subunit (LSU) rRNA gene portions were sequenced from 3 to 5 individual spores from each of two isolates of Rhizophagus irregularis and Gigaspora margarita. A total of 1482 Sanger sequences (0.5 Mb) from 239 clones were obtained, spanning ~4370 bp of the ribosomal operon when concatenated. Intrasporal and intra‐isolate sequence variation was high for all three regions even though variant numbers were not exhausted by sequencing 12–40 clones per isolate. Intra‐isolate nucleotide variation levels followed the expected order of ITS > LSU > SSU, but the values were strongly dependent on isolate identity. Single nucleotide polymorphism (SNP) densities over 4 SNP/kb in the ribosomal operon were detected in all four isolates. Automated operational taxonomic unit picking within the sequence set of known identity overestimated species richness with almost all cut‐off levels, markers and isolates. Average intraspecific sequence similarity values were 99%, 96% and 94% for amplicons in SSU, LSU and ITS, respectively. The suitability of the central part of the SSU as a marker for AM fungal community surveys was further supported by its level of nucleotide variation, which is similar to that of the ITS region; its alignability across the entire phylum; its appropriate length for next‐generation sequencing; and its ease of amplification in single‐step PCR.  相似文献   
92.
It is useful to have robust gene-environment interaction tests that can utilize a variety of family structures in an efficient way. This article focuses on tests for gene-environment interaction in the presence of main genetic and environmental effects. The objective is to develop powerful tests that can combine trio data with parental genotypes and discordant sibships when parents' genotypes are missing. We first make a modest improvement on a method for discordant sibs (discordant on phenotype), but the approach does not allow one to use families when all offspring are affected, e.g., trios. We then make a modest improvement on a Mendelian transmission-based approach that is inefficient when discordant sibs are available, but can be applied to any nuclear family. Finally, we propose a hybrid approach that utilizes the most efficient method for a specific family type, then combines over families. We utilize this hybrid approach to analyze a chronic obstructive pulmonary disorder dataset to test for gene-environment interaction in the Serpine2 gene with smoking. The methods are freely available in the R package fbati.  相似文献   
93.
Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome – called intralocus sexual conflict. Although the autosomal melanocortin‐1‐receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy–Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year‐specific deviations from Hardy–Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.  相似文献   
94.
In this work, a hierarchically porous and ultrathick “breathable” wood‐based cathode for high‐performance Li‐O2 batteries is developed. The 3D carbon matrix obtained from the carbonized and activated wood (denoted as CA‐wood) serves as a superconductive current collector and an ideal porous host for accommodating catalysts. The ruthenium (Ru) nanoparticles are uniformly anchored on the porous wall of the aligned microchannels (denoted as CA‐wood/Ru). The aligned open microchannels inside the carbon matrix contribute to unimpeded oxygen gas diffusion. Moreover, the hierarchical pores on the microchannel walls can be facilely impregnated by electrolyte, forming a continuous supply of electrolyte. As a result, numerous ideal triphase active sites are formed where electrolyte, oxygen, and catalyst accumulate on the porous walls of microchannels. Benefiting from the numerous well‐balanced triple‐phase active sites, the assembled Li‐O2 battery with the CA‐wood/Ru cathode (thickness: ≈700 µm) shows a high specific area capacity of 8.58 mA h cm?2 at 0.1 mA cm?2. Moreover, the areal capacity can be further increased to 56.0 mA h cm?2 by using an ultrathick CA‐wood/Ru cathode with a thickness of ≈3.4 mm. The facile ultrathick wood‐based cathodes can be applied to other cathodes to achieve a super high areal capacity without sacrificing the electrochemical performance.  相似文献   
95.
Increasing the power conversion efficiency (PCE) of the two‐dimensional (2D) perovskite‐based solar cells (PVSCs) is really a challenge. Vertical orientation of the 2D perovskite film is an efficient strategy to elevate the PCE. In this work, vertically orientated highly crystalline 2D (PEA)2(MA)n–1PbnI3n+1 (PEA= phenylethylammonium, MA = methylammonium, n = 3, 4, 5) films are fabricated with the assistance of an ammonium thiocyanate (NH4SCN) additive by a one‐step spin‐coating method. Planar‐structured PVSCs with the device structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/(PEA)2(MA)n–1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/bahocuproine/Ag are fabricated. The PCE of the PVSCs is boosted from the original 0.56% (without NH4SCN) to 11.01% with the optimized NH4SCN addition at n = 5, which is among the highest PCE values for the low‐n (n < 10) 2D perovskite‐based PVSCs. The improved performance is attributed to the vertically orientated highly crystalline 2D perovskite thin films as well as the balanced electron/hole transportation. The humidity stability of this oriented 2D perovskite thin film is also confirmed by the almost unchanged X‐ray diffraction patterns after 28 d exposed to the moisture in a humidity‐controlled cabinet (Hr = 55 ± 5%). The unsealed device retains 78.5% of its original PCE after 160 h storage in air atmosphere with humidity of 55 ± 5%. The results provide an effective approach toward a highly efficient and stable PVSC for future commercialization.  相似文献   
96.
Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7‐RNA polymerase‐dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3‐hydroxybutyryl‐CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315–327, 2018  相似文献   
97.
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi‐model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi‐model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.  相似文献   
98.
99.
Anorexia nervosa is an eating disorder often associated with intestinal disorders. To explore the underlying mechanisms of these disorders, the colonic proteome was evaluated during activity‐based anorexia. Female C57Bl/6 mice were randomized into three groups: Control, Limited Food Access (LFA) and Activity‐Based Anorexia (ABA). LFA and ABA mice had a progressive limited access to food but only ABA mice had access to an activity wheel. On colonic mucosal protein extracts, a 2D PAGE‐based comparative proteomic analysis was then performed and differentially expressed proteins were identified by LC‐ESI‐MS/MS. Twenty‐seven nonredundant proteins that were differentially expressed between Control, LFA, and ABA groups were identified. ABA mice exhibited alteration of several mitochondrial proteins involved in energy metabolism such as dihydrolipoyl dehydrogenase and 3‐mercaptopyruvate sulfurtransferase. In addition, a downregulation of mammalian target of rapamycin (mTOR) pathway was observed leading, on the one hand, to the inhibition of protein synthesis, evaluated by puromycin incorporation and mediated by the increased phosphorylation of eukaryotic elongation factor 2, and on the other hand, to the activation of autophagy, assessed by the increase of the marker of autophagy, form LC3‐phosphatidylethanolamine conjugate/Cytosolic form of Microtubule‐associated protein 1A/1B light chain 3 (LC3II/LC3I) ratio. Colonic mucosal proteome is altered during ABA suggesting a downregulation of energy metabolism. A decrease of protein synthesis and an activation of autophagy were also observed mediated by mTOR pathway.  相似文献   
100.
Immobilized trypsin (IM) has been recognized as an alternative to free trypsin (FT) for accelerating protein digestion 30 years ago. However, some questions of IM still need to be answered. How does the solid matrix of IM influence its preference for protein cleavage and how well can IM perform for deep bottom‐up proteomics compared to FT? By analyzing Escherichia coli proteome samples digested with amine or carboxyl functionalized magnetic bead–based IM (IM‐N or IM‐C) or FT, it is observed that IM‐N with the nearly neutral solid matrix, IM‐C with the negatively charged solid matrix, and FT have similar cleavage preference considering the microenvironment surrounding the cleavage sites. IM‐N (15 min) and FT (12 h) both approach 9000 protein identifications (IDs) from a mouse brain proteome. Compared to FT, IM‐N has no bias in the digestion of proteins that are involved in various biological processes, are located in different components of cells, have diverse functions, and are expressed in varying abundance. A high‐throughput bottom‐up proteomics workflow comprising IM‐N‐based rapid protein cleavage and fast CZE‐MS/MS enables the completion of protein sample preparation, CZE‐MS/MS analysis, and data analysis in only 3 h, resulting in 1000 protein IDs from the mouse brain proteome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号