首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4876篇
  免费   568篇
  国内免费   580篇
  2024年   11篇
  2023年   136篇
  2022年   187篇
  2021年   246篇
  2020年   286篇
  2019年   314篇
  2018年   248篇
  2017年   244篇
  2016年   262篇
  2015年   256篇
  2014年   343篇
  2013年   398篇
  2012年   201篇
  2011年   290篇
  2010年   184篇
  2009年   305篇
  2008年   245篇
  2007年   253篇
  2006年   208篇
  2005年   237篇
  2004年   202篇
  2003年   185篇
  2002年   162篇
  2001年   108篇
  2000年   82篇
  1999年   69篇
  1998年   56篇
  1997年   41篇
  1996年   38篇
  1995年   38篇
  1994年   45篇
  1993年   24篇
  1992年   32篇
  1991年   17篇
  1990年   13篇
  1989年   8篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1981年   8篇
排序方式: 共有6024条查询结果,搜索用时 312 毫秒
71.
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   
72.
The microvascular endothelial network is essential for bone formation and regeneration. In this context, endothelial cells not only support vascularization but also influence bone physiology via cell contact‐dependent mechanisms. In order to improve vascularization and osteogenesis in tissue engineering applications, several strategies have been developed. One promising approach is the coapplication of endothelial and adipose derived stem cells (ADSCs). In this study, we aimed at investigating the best ratio of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiated ADSCs with regard to proliferation, apoptosis, osteogenesis and angiogenesis. For this purpose, cocultures of ADSCs and HUVECs with ratios of 25%:75%, 50%:50% and 75%:25% were performed. We were able to prove that cocultivation supports proliferation whereas apoptosis was unidirectional decreased in cocultured HUVECs mediated by a p‐BAD‐dependent mechanism. Moreover, coculturing ADSCs and HUVECs stimulated matrix mineralization and the activity of alkaline phosphatase (ALP). Increased gene expression of the proangiogenic markers eNOS, Flt, Ang2 and MMP3 as well as sprouting phenomena in matrigel assays proved the angiogenic potential of the coculture. In summary, coculturing ADSCs and HUVECs stimulates proliferation, cell survival, osteogenesis and angiogenesis particularly in the 50%:50% coculture.  相似文献   
73.
Regenerative therapies including stem cell treatments hold promise to allow curing patients affected by severe cardiac muscle diseases. However, the clinical efficacy of stem cell therapy remains elusive, so far. The two key roadblocks that still need to be overcome are the poor cell engraftment into the injured myocardium and the limited knowledge of the ideal mixture of bioactive factors to be locally delivered for restoring heart function. Thus, therapeutic strategies for cardiac repair are directed to increase the retention and functional integration of transplanted cells in the damaged myocardium or to enhance the endogenous repair mechanisms through cell-free therapies. In this context, biomaterial-based technologies and tissue engineering approaches have the potential to dramatically impact cardiac translational medicine. This review intends to offer some consideration on the cell-based and cell-free cardiac therapies, their limitations and the possible future developments.  相似文献   
74.
75.
Rational design and construction of bifunctional electrocatalysts with excellent activity and durability is imperative for water splitting. Herein, a novel top‐down strategy to realize a hierarchical branched Mo‐doped sulfide/phosphide heterostructure (Mo‐Ni3S2/NixPy hollow nanorods), by partially phosphating Mo‐Ni3S2/NF flower clusters, is proposed. Benefitting from the optimized electronic structure configuration, hierarchical branched hollow nanorod structure, and abundant heterogeneous interfaces, the as‐obtained multisite Mo‐Ni3S2/NixPy/NF electrode has remarkable stability and bifunctional electrocatalytic activity in the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in 1 m KOH solutions. It possesses an extremely low overpotential of 238 mV at the current density of 50 mA cm?2 for OER. Importantly, when assembled as anode and cathode simultaneously, it merely requires an ultralow cell voltage of 1.46 V to achieve the current density of 10 mA cm?2, with excellent durability for over 72 h, outperforming most of the reported Ni‐based bifunctional materials. Density functional theory results further confirm that the doped heterostructure can synergistically optimize Gibbs free energies of H and O‐containing intermediates (OH*, O*, and OOH*) during HER and OER processes, thus accelerating the catalytic kinetics of electrochemical water splitting. This work demonstrates the importance of the rational combination of metal doping and interface engineering for advanced catalytic materials.  相似文献   
76.
77.
Open‐circuit voltages of lead‐halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open‐circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open‐circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta‐analysis of methods to determine the bandgap and a radiative limit for open‐circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed.  相似文献   
78.
In the industrial l-glutamate production established on the use of Corynebacterium glutamicum, l-glutamate synthesized intracellularly is exported through mechanosensitive transmembrane channel proteins (MscCG and MscCG2) activated by the force-from-lipids. The involvement of MscCG2 in l-glutamate export by C. glutamicum was demonstrated in 2018; however, MscCG was previously found to be the major exporter of l-glutamate. Recent advances in research methods, such as development of the microbial patch clamp, revealed unique characteristics of MscCG, including its conductance, opening and closing thresholds, and gating hysteresis, as well as the significant effect of membrane lipids on the channel properties. In addition, the cryoelectron microscopic structure of Escherichia coli MscS, the canonical representative of the mechanosensitive channel family to which MscCG and MscCG2 belong, revealed its new membrane-interacting region, new position within the lipid bilayer, and hook lipids in a newly defined cavity between subunits. In this short review, the applications of bacterial mechanosensitive channels in the development of effective microbial cell factories, which will contribute to sustainable development, are discussed.  相似文献   
79.
The amide functional group is ubiquitous in nature and one of the most important motifs in pharmaceuticals, agrochemicals, and other valuable products. While coupling amides and carboxylic acids is a trivial synthetic transformation, it often requires protective group manipulation, along with stoichiometric quantities of expensive and deleterious coupling reagents. Nature has evolved a range of enzymes to construct amide bonds, the vast majority of which utilize adenosine triphosphate to activate the carboxylic acid substrate for amine coupling. Despite the fact that these enzymes operate under mild conditions, as well as possessing chemoselectivity and regioselectivity that obviates the need for protecting groups, their synthetic potential has been largely unexplored. In this review, we discuss recent research into the discovery, characterization, and development of amide bond forming enzymes, with an emphasis on stand-alone ligase enzymes that can generate amides directly from simple carboxylic acid and amine substrates.  相似文献   
80.
Lignin depolymerization generates a mixture of numerous compounds that are difficult to separate cost-effectively. To address this heterogeneity issue, microbes have been employed to ‘biologically funnel’ a broad range of compounds present in depolymerized lignin into common central metabolites that can be converted into a single desirable product. Because the composition of depolymerized lignin varies significantly with the type of biomass and the depolymerization method, microbes should be selected and engineered by considering this compositional variation. An ideal microbe must efficiently metabolize all relevant lignin-derived compounds regardless of the compositional variation of feedstocks, but discovering or developing such a perfect microbe is very challenging. Instead, developing multiple tailored microbes to tolerate a given mixture of lignin-derived compounds and to convert most of these into a target product is more practical. This review summarizes recent progress toward the development of such microbes for lignin valorization and offers future directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号