首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4895篇
  免费   518篇
  国内免费   261篇
  2024年   11篇
  2023年   167篇
  2022年   121篇
  2021年   186篇
  2020年   214篇
  2019年   268篇
  2018年   227篇
  2017年   219篇
  2016年   190篇
  2015年   182篇
  2014年   239篇
  2013年   287篇
  2012年   178篇
  2011年   174篇
  2010年   154篇
  2009年   212篇
  2008年   224篇
  2007年   237篇
  2006年   194篇
  2005年   183篇
  2004年   181篇
  2003年   172篇
  2002年   163篇
  2001年   133篇
  2000年   141篇
  1999年   112篇
  1998年   71篇
  1997年   65篇
  1996年   47篇
  1995年   47篇
  1994年   54篇
  1993年   47篇
  1992年   51篇
  1991年   53篇
  1990年   33篇
  1989年   32篇
  1988年   46篇
  1987年   45篇
  1986年   30篇
  1985年   38篇
  1984年   28篇
  1983年   30篇
  1982年   30篇
  1981年   29篇
  1980年   27篇
  1979年   24篇
  1978年   19篇
  1977年   16篇
  1976年   12篇
  1974年   7篇
排序方式: 共有5674条查询结果,搜索用时 689 毫秒
81.
Analysts often estimate treatment effects in observational studies using propensity score matching techniques. When there are missing covariate values, analysts can multiply impute the missing data to create m completed data sets. Analysts can then estimate propensity scores on each of the completed data sets, and use these to estimate treatment effects. However, there has been relatively little attention on developing imputation models to deal with the additional problem of missing treatment indicators, perhaps due to the consequences of generating implausible imputations. However, simply ignoring the missing treatment values, akin to a complete case analysis, could also lead to problems when estimating treatment effects. We propose a latent class model to multiply impute missing treatment indicators. We illustrate its performance through simulations and with data taken from a study on determinants of children's cognitive development. This approach is seen to obtain treatment effect estimates closer to the true treatment effect than when employing conventional imputation procedures as well as compared to a complete case analysis.  相似文献   
82.
The gold standard for investigating the efficacy of a new therapy is a (pragmatic) randomized controlled trial (RCT). This approach is costly, time-consuming, and not always practicable. At the same time, huge quantities of available patient-level control condition data in analyzable format of (former) RCTs or real-world data (RWD) are neglected. Therefore, alternative study designs are desirable. The design presented here consists of setting up a prediction model for determining treatment effects under the control condition for future patients. When a new treatment is intended to be tested against a control treatment, a single-arm trial for the new therapy is conducted. The treatment effect is then evaluated by comparing the outcomes of the single-arm trial against the predicted outcomes under the control condition. While there are obvious advantages of this design compared to classical RCTs (increased efficiency, lower cost, alleviating participants’ fear of being on control treatment), there are several sources of bias. Our aim is to investigate whether and how such a design—the prediction design—may be used to provide information on treatment effects by leveraging external data sources. For this purpose, we investigated under what assumptions linear prediction models could be used to predict the counterfactual of patients precisely enough to construct a test and an appropriate sample size formula for evaluating the average treatment effect in the population of a new study. A user-friendly R Shiny application (available at: https://web.imbi.uni-heidelberg.de/PredictionDesignR/ ) facilitates the application of the proposed methods, while a real-world application example illustrates them.  相似文献   
83.
The turnover measurement of proteins and proteoforms has been largely facilitated by workflows coupling metabolic labeling with mass spectrometry (MS), including dynamic stable isotope labeling by amino acids in cell culture (dynamic SILAC) or pulsed SILAC (pSILAC). Very recent studies including ours have integrated themeasurement of post-translational modifications (PTMs) at the proteome level (i.e., phosphoproteomics) with pSILAC experiments in steady state systems, exploring the link between PTMs and turnover at the proteome-scale. An open question in the field is how to exactly interpret these complex datasets in a biological perspective. Here, we present a novel pSILAC phosphoproteomic dataset which was obtained during a dynamic process of cell starvation using data-independent acquisition MS (DIA-MS). To provide an unbiased “hypothesis-free” analysis framework, we developed a strategy to interrogate how phosphorylation dynamically impacts protein turnover across the time series data. With this strategy, we discovered a complex relationship between phosphorylation and protein turnover that was previously underexplored. Our results further revealed a link between phosphorylation stoichiometry with the turnover of phosphorylated peptidoforms. Moreover, our results suggested that phosphoproteomic turnover diversity cannot directly explain the abundance regulation of phosphorylation during cell starvation, underscoring the importance of future studies addressing PTM site-resolved protein turnover.  相似文献   
84.
Research data management (RDM) requires standards, policies, and guidelines. Findable, accessible, interoperable, and reusable (FAIR) data management is critical for sustainable research. Therefore, collaborative approaches for managing FAIR-structured data are becoming increasingly important for long-term, sustainable RDM. However, they are rather hesitantly applied in bioengineering. One of the reasons may be found in the interdisciplinary character of the research field. In addition, bioengineering as application of principles of biology and tools of process engineering, often have to meet different criteria. In consequence, RDM is complicated by the fact that researchers from different scientific institutions must meet the criteria of their home institution, which can lead to additional conflicts. Therefore, centrally provided general repositories implementing a collaborative approach that enables data storage from the outset In a biotechnology research network with over 20 tandem projects, it was demonstrated how FAIR-RDM can be implemented through a collaborative approach and the use of a data structure. In addition, the importance of a structure within a repository was demonstrated to keep biotechnology research data available throughout the entire data lifecycle. Furthermore, the biotechnology research network highlighted the importance of a structure within a repository to keep research data available throughout the entire data lifecycle.  相似文献   
85.
Studies of plant protoplasts using both fluorescent dyes and electron dense probes have demonstrated endocytosis in plants. Ultrastructural work with soybean protoplasts using cationized ferritin (CF) revealed an endocytotic pathway from coated pits at the plasma membrane to coated vesicles, the partially coated reticulum, Golgi bodies, multivesicular bodies and finally the vacuole. Endocytosis may be responsible for membrane retrieval from the cell surface or degradation of elicitors or toxins during host-pathogen interactions. Immunofluorescence studies of dividing plant protoplasts have provided new information about the preprophase band (PPB) of microtubules and the shape of spindles. Studies of PPBs in soybean protoplast cultures permitted detailed examination of PPB development and an assessment of the usefulness of the PPB index for identifying morphogenic cultures. In multinucleate protoplasts the size and number of PPBs were apparently not controlled by nuclear number. Research with conifer protoplasts resulted in the discovery of new features of gymnosperm spindles.  相似文献   
86.
DNA microarray technology permits the study of biological systems and processes on a genome-wide scale. Arrays based on cDNA clones, oligonucleotides and genomic clones have been developed for investigations of gene expression, genetic analysis and genomic changes associated with disease. Over the past 3-4 years, microarrays have become more widely available to the research community. This has occurred through increased commercial availability of custom and generic arrays and the development of robotic equipment that has enabled array printing and analysis facilities to be established in academic research institutions. This brief review examines the public and commercial resources, the microarray fabrication and data capture and analysis equipment currently available to the user.  相似文献   
87.
The passive membrane properties of the tangential cells in the fly lobula plate (CH, HS, and VS cells, Fig. 1) were determined by combining compartmental modeling and current injection experiments. As a prerequisite, we built a digital base of the cells by 3D-reconstructing individual tangential cells from cobalt-stained material including both CH cells (VCH and DCH cells), all three HS cells (HSN, HSE, and HSS cells) and most members of the VS cell family (Figs. 2, 3). In a first series of experiments, hyperpolarizing and depolarizing currents were injected to determine steady-state I-V curves (Fig. 4). At potentials more negative than resting, a linear relationship holds, whereas at potentials more positive than resting, an outward rectification is observed. Therefore, in all subsequent experiments, when a sinusoidal current of variable frequency was injected, a negative DC current was superimposed to keep the neurons in a hyperpolarized state. The resulting amplitude and phase spectra revealed an average steady-state input resistance of 4 to 5 M and a cut-off frequency between 40 and 80 Hz (Fig. 5). To determine the passive membrane parameters R m (specific membrane resistance), R i (specific internal resistivity), and C m (specific membrane capacitance), the experiments were repeated in computer simulations on compartmental models of the cells (Fig. 6). Good fits between experimental and simulation data were obtained for the following values: R m = 2.5 kcm2, R i = 60 cm, and C m = 1.5 F/cm2 for CH cells; R m = 2.0 kcm2, R i = 40 cm, and C m = 0.9 F/cm2 for HS cells; R m = 2.0 kcm2, R i = 40 cm, and C m = 0.8 F/cm2 for VS cells. An error analysis of the fitting procedure revealed an area of confidence in the R m -R i plane within which the R m -R i value pairs are still compatible with the experimental data given the statistical fluctuations inherent in the experiments (Figs. 7, 8). We also investigated whether there exist characteristic differences between different members of the same cell class and how much the exact placement of the electrode (within ±100 m along the axon) influences the result of the simulation (Fig. 9). The membrane parameters were further examined by injection of a hyperpolarizing current pulse (Fig. 10). The resulting compartmental models (Fig. 11) based on the passive membrane parameters determined in this way form the basis of forthcoming studies on dendritic integration and signal propagation in the fly tangential cells (Haag et al., 1997; Haag and Borst, 1997).  相似文献   
88.
Summary Triple-resonance experiments can be designed to provide useful information on spin-system topologies. In this paper we demonstrate optimized proton and carbon versions of PFG-CT-HACANH and PFG-CT-HACA(CO)NH straight-through triple-resonance experiments that allow rapid and almost complete assignments of backbone H, 13C, 15N and HN resonances in small proteins. This work provides a practical guide to using these experiments for determining resonance assignments in proteins, and for identifying both intraresidue and sequential connections involving glycine residues. Two types of delay tunings within these pulse sequences provide phase discrimination of backbone Gly C and H resonances: (i) C–H phase discrimination by tuning of the refocusing period a_f; (ii) C–C phase discrimination by tuning of the 13C constant-time evolution period 2Tc. For small proteins, C–C phase tuning provides better S/N ratios in PFG-CT-HACANH experiments while C–H phase tuning provides better S/N ratios in PFG-CT-HACA(CO)NH. These same principles can also be applied to triple-resonance experiments utilizing 13C-13C COSY and TOCSY transfer from peripheral side-chain atoms with detection of backbone amide protons for classification of side-chain spin-system topologies. Such data are valuable in algorithms for automated analysis of resonance assignments in proteins.  相似文献   
89.
A collagen gene (Dcg1) was characterized in Drosophila melanogaster and shown to encode a peptide related to vertebrate basement membrane type IV collagen chains. To study the function of type IV collagen during Drosophila development, we transformed flies with a partially truncated Dcg1 gene under the control of a heat-shock promotor. This construct induced synthesis of shortened pro- chains which associated with normal ones and thereby caused degradation of the shortened and normal pro- chains through a process called pro-collagen suicide. A large proportion of embryos expressing the transgene developed a phenotype exhibiting absence or partial retraction of the germ band with defects in nerve cord condensation and dorsal closure. Together these results indicated that, during embryogenesis, type IV collagen was an essential guiding factor for cell-matrix interactions in morphogenetic events.  相似文献   
90.
红细胞膜骨架与脂双层间存在着相互作用,其中带4.1蛋白与血型糖蛋白C/D间的相互作用对维持正常红细胞的形态和机械稳定性起着重要作用,研究表明,带4.1蛋白在血型糖蛋白C、D上的结合位点分别位于血型糖蛋白C的第82~98位氨基酸残基和血型糖蛋白D的第61~77位氨基酸残基.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号