首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3716篇
  免费   198篇
  国内免费   309篇
  4223篇
  2023年   38篇
  2022年   76篇
  2021年   90篇
  2020年   75篇
  2019年   95篇
  2018年   91篇
  2017年   93篇
  2016年   102篇
  2015年   146篇
  2014年   154篇
  2013年   349篇
  2012年   134篇
  2011年   136篇
  2010年   139篇
  2009年   166篇
  2008年   214篇
  2007年   213篇
  2006年   186篇
  2005年   175篇
  2004年   186篇
  2003年   173篇
  2002年   153篇
  2001年   135篇
  2000年   124篇
  1999年   91篇
  1998年   96篇
  1997年   52篇
  1996年   51篇
  1995年   58篇
  1994年   40篇
  1993年   43篇
  1992年   56篇
  1991年   37篇
  1990年   20篇
  1989年   19篇
  1988年   18篇
  1987年   10篇
  1986年   11篇
  1985年   36篇
  1984年   29篇
  1983年   15篇
  1982年   24篇
  1981年   7篇
  1979年   9篇
  1978年   7篇
  1977年   12篇
  1976年   6篇
  1975年   8篇
  1974年   8篇
  1973年   7篇
排序方式: 共有4223条查询结果,搜索用时 15 毫秒
61.
酵母双杂交系统的发展及其衍生系统的比较   总被引:1,自引:0,他引:1  
酵母双杂交及其衍生系统是鉴定及分析蛋白质-蛋白质、蛋白质-DNA、蛋白质-RNA相互作用的最常用、最有效的工具之一。本文系统介绍了该技术的背景、发展过程,以及由Fields和Song初次描述的由酵母双杂交系统衍生而来的几种主要的双杂交系统的特点,并简要比较了各系统的优缺点。  相似文献   
62.
Growth, CO2 exchange, and the ultrastructure of chloroplasts were investigated in the leaves of potato plants (Solanum tuberosum L., cv. Désirée) of wild type and transformed with a gene for yeast invertase under the control of patatin class I B33 promoter (for apoplastic enzyme) grown in vitro on the Murashige and Skoog medium supplemented with 2% sucrose. At a temperature of 22°C optimal for growth, the transformed plants differed from the plants of wild type in retarded growth and a lower rate of photosynthesis as calculated per plant. On a leaf dry weight basis, photosynthesis of transformed plants was higher than in control plants. Under hypothermia (5°C), dark respiration and especially photosynthesis of transformed plants turned out to be more intense than in control material. After a prolonged exposure to low temperature (6 days at 5°C), in the plants of both genotypes, the ultrastructure of chloroplasts changed. Absolute areas of sections of chloroplasts and starch grains rose, and the area of plastoglobules decreased; in transformed plants, these changes were more pronounced. By some ultrastructural characteristics: a reduction in the cold of relative total area of sections of starch grains and plastoglobules (in percents of the chloroplast section area) and in the number of granal thylakoids (per a chloroplast section area), transformed plants turned out to be more cold resistant than wild-type plants. The obtained results are discussed in connection with changes in source-sink relations in transformed potato plants. These changes modify the balance between photosynthesis and retarded efflux of assimilates, causing an increase in the intracellular level of sugars and a rise in the tolerance to chilling.  相似文献   
63.
A self-cloning module for gene knock-out and knock-in in industrial brewing yeast strain was constructed that contains copper resistance and γ-glutamylcysteine synthetase gene cassette, flanked by alcohol dehydrogenase II gene ( ADH2 ) of Saccharomyces cerevisiae . The module was used to obtain recombined strains RY1 and RY2 by targeting the ADH2 locus of host Y1. RY1 and RY2 were genetically stable. PCR and enzyme activity analysis of RY1 and RY2 cells showed that one copy of ADH2 was deleted by GSH1 + CUP1 insertion, and an additional copy of wild type was still present. The fermentation ability of the recombinants was not changed after genetic modification, and a high level of glutathione (GSH) was secreted, resulting from GSH1 overexpression, which codes for γ-glutamylcysteine synthetase. A pilot-scale brewing test for RY1 and RY2 indicated that acetaldehyde content in fermenting liquor decreased by 21–22%, GSH content increased by 20–22% compared with the host, the antioxidizability of the recombinants was improved, and the sensorial evaluation was also better than that of the host. No heterologous DNA was harbored in the recombinants; therefore, they could be applied in the beer industry in terms of their biosafety.  相似文献   
64.
The monokaryotic yeast phase of the heterobasidiomycete Itersonilia perplexans, unlike the hyphal phase, was found to be sensitive to mycocins produced by killer strains of Cryptococcus humicola, Cr. laurentii, Cystofilobasidium bisporidii and Rhodotorula fujisanense. Both the yeast and hyphal phases wer resistant to mycocins of Cr. podzolicus, Filobasidium capsuligenum, Rhodotorula glutinis, Rh. mucilaginosa, Rh. pallida, Sporidiobolus johnsonii, Sb. pararoseus and Sporobolomyces alborubescens. The different sensitivity patterns of yeast and hyphal phases are probably caused by biochemical differences in the cell walls.  相似文献   
65.
The degradation of glutathione (GSH) in the yeast Saccharomyces cerevisiae appears to be mediated only by γ-glutamyltranspeptidase and cysteinylglycine dipeptidase. Other enzymes of the γ-glutamyl cycle, γ-glutamyl cyclotransferase and 5-oxo-l-prolinase, are not present in the yeast. In vivo transpeptidation was shown in the presence of a high intracellular level of γ-glutamyltranspeptidase, but only when the de-repressing nitrogen source was a suitable acceptor of the transferase reaction. In contrast, when the de-repressing source was not an acceptor of the transferase reaction (e.g. urea), only glutamate was detected. Intracellular GSH is virtually inert when the level of γ-glutamyltranspeptidase is low. Possible roles for in vivo transpeptidation are discussed.  相似文献   
66.
Aims: Microbial biomass is an important biotechnological parameter. The traditional method for its determination involves an oven‐drying step and equilibration to room temperature before weighing, and it is tedious and time consuming. This work studied the utilisation of a moisture analyser consisting of an efficient infrared‐heating module and an analytical balance for the determination of microbial biomass by dry weight. Methods and Results: The method duration depended on the sample volume and was between 7 and 40 min for sample volumes of 1–10 ml. The method precision depended on the total dry weight analysed – 10 mg of total dry weight being sufficient to achieve coefficients of variation of 5% or less. Comparison with the conventional oven method provided a correlation coefficient r2 of 0·99. The recovery of an internal standard ranged between 94·2 and 106·4% with a precision of 1·39–4·53%CV. Conclusions: Validation revealed sufficient method accuracy, precision and robustness and was successfully applied to the study of yeast and bacterial growth kinetics. Techniques are discussed that allow for increased method precision at low biomass concentrations, and equations are provided to estimate required drying time and method precision based on sample volume and total sample dry weight, respectively. Significance and Impact of the Study: This work presents a rapid method for the determination of microbial biomass, allowing for the timely implementation of biomass‐based information in biotechnological and laboratory protocols.  相似文献   
67.
To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age‐dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high‐throughput replica‐pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age‐specific mutation suppression gene. While wild‐type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells.  相似文献   
68.
Single-molecule imaging has gained momentum to quantify the dynamics of biomolecules in live cells, as it provides direct real-time measurements of various cellular activities under their physiological environment. Yeast, a simple and widely used eukaryote, serves as a good model system to quantify single-molecule dynamics of various cellular processes because of its low genomic and cellular complexities, as well as its facile ability to be genetically manipulated. In the past decade, significant developments have been made regarding the intracellular labeling of biomolecules (proteins, mRNA, fatty acids), the microscopy setups to visualize single-molecules and capture their fast dynamics, and the data analysis pipelines to interpret such dynamics. In this review, we summarize the current state of knowledge for the single-molecule imaging in live yeast cells to provide a ready reference for beginners. We provide a comprehensive table to demonstrate how various labs tailored the imaging regimes and data analysis pipelines to estimate various biophysical parameters for a variety of biological processes. Lastly, we present current challenges and future directions for developing better tools and resources for single-molecule imaging in live yeast cells.  相似文献   
69.
It has recently been demonstrated that dried cells of Saccharomyces cerevisiae were able to produce alcohols and aldehydes in a solid/gas reactor with in situ cofactor regeneration. Since diffusion of gaseous substrates may be limited by the membrane and cell wall, cell disruption by sonication was used to improve oxidoreduction with ethanol and butyraldehyde as substrates. Results showed that partial cell disruption enhances the maximum conversion yield with the best results obtained after 2 min of sonication. Beyond this time, the ADH activity decreased. Better stability was observed in the pellet obtained after centrifugation indicating the importance of cell environment for enzyme stability. Tests on purified mitochondria showed that the ADH activity in cells was mainly cytoplasmic. The addition of oxidized cofactor did not change either the activity or the stability of the catalyst in a gaseous medium. The effect of water activity was studied on material obtained after 2 min of disruption and a reduction of critical water activity needed for revealing enzymatic activity was observed. With increasing aw, the enzyme was active at aw=0.3 while a water activity of 0.4 was required before disruption. Nevertheless, the best compromise between activity and stability was obtained in both cases for a water activity of 0.57.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号