首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   49篇
  国内免费   55篇
  2024年   2篇
  2023年   17篇
  2022年   24篇
  2021年   25篇
  2020年   10篇
  2019年   16篇
  2018年   15篇
  2017年   12篇
  2016年   16篇
  2015年   27篇
  2014年   21篇
  2013年   32篇
  2012年   16篇
  2011年   25篇
  2010年   29篇
  2009年   36篇
  2008年   37篇
  2007年   32篇
  2006年   44篇
  2005年   42篇
  2004年   38篇
  2003年   35篇
  2002年   31篇
  2001年   19篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   7篇
  1985年   25篇
  1984年   17篇
  1983年   10篇
  1982年   8篇
  1981年   7篇
  1980年   4篇
  1979年   8篇
  1978年   8篇
  1977年   4篇
  1976年   4篇
  1974年   1篇
排序方式: 共有771条查询结果,搜索用时 343 毫秒
91.
Bromoacetaldehyde (BAA) was used to study the secondary structure of DNA in lambda-phage particles. It was determined that about 1% of the adenines in the intraphage lambda-DNA reacts readily with BAA, thus, they are placed in DNA sites with disturbed complementary interactions. These adenines are close to the tryptophan residues of the phage protein. Fluorescence emission of epsilon A in the intraphage DNA is dramatically quenched. This, apparently, indicates the interaction between epsilon A and Trp- and/or Tyr- and/or Met-residues of phage protein.  相似文献   
92.
93.
The effects of co-evolution with lytic phage on bacterial virulence-related traits are largely unknown. In this study we investigate the incidence of the mucoid phenotype of the bacterium Pseudomonas fluorescens SBW25 in response to co-evolution with the lytic phage phi2 (φ2). The mucoid phenotype of Pseudomonas spp. is due to overproduction of alginate and is a considerable virulence factor contributing to the intractability of infections most notably in cystic fibrosis (CF) lung, but also in pathogenic infections of plants. Our data show that this phenotype can evolve as an adaptive response to phage predation and is favoured under specific abiotic conditions, in particular a homogenous spatial structure and a high rate of nutrient replacement. The mucoid phenotype remains partially sensitive to phage infection, which facilitates ‘apparent competition'' with phage-sensitive competitors, partially offsetting the costs of alginate production. Although P. fluorescens SBW25 is not a pathogen, several key characteristics typical of Pseudomonas aeruginosa clinical isolates from CF lung were noted, including loss of motility on mucoid conversion and a high rate of spontaneous reversion to the wild-type phenotype. Although the genetic mechanisms of this phenotype remain unknown, they do not include mutations at many of the commonly reported loci implicated in mucoid conversion, including mucA and algU. These data not only further our understanding of the potential role phage have in the ecology and evolution of bacteria virulence in both natural and clinical settings, but also highlight the need to consider both biotic and abiotic variables if bacteriophages are to be used therapeutically.  相似文献   
94.
95.
96.
97.
In a two-phase operation, E. coli containing λSNNU1 (Q S ) in the chromosome is typically cultured at 33°C and cloned gene expression is induced by elevating the temperature. At least 40°C is necessary for complete induction of cloned gene expression; however, temperatures above 40°C have been shown to inhibit cloned gene expression. This suggests that a three-phase operation, which has an induction phase between the growth and production phases, may result in higher gene expression. In this study, optimal temperature management strategies were investigated for the three-phase operation of cloned gene expression in thermally inducible E. coli/bacteriophage systems. The optimal temperature for the induction phase was determined to be 40°C. When the temperature of the production stage was 33°C, the optimal time period for the induction phase at 40°C was determined to be 60 min. In contrast, when the temperature of the production phase was 37°C, the optimal period for the induction phase at 40°C was 20∼30 min. When the three-phase temperature and temporal profile were set at a growth phase of 33°C, an induction phase at 40°C for 30 min, and a production phase at 37°C, the highest level of cloned gene expression was achieved.  相似文献   
98.
Aims:  To study the efficacy of the lytic phage φS1 in eliminating Pseudomonas fluorescens in the early stage of biofilm formation, using an in situ and real time methodology for cell quantification.
Methods and Results:  Cell adhesion and phage infection studies were carried out in a parallel plate flow chamber under laminar conditions. Cells were allowed to adhere until reaching 1·7–1·8 × 106 cells cm−2 and phage infection was performed with two different phage concentrations (2 × 109 PFU ml−1 and 1 × 1010 PFU ml−1). Phage concentration clearly affects the speed of infection. The less concentrated phage solution promoted a three times slower rate of cell removal but did not affect the overall percentage of cell removal. In fact, after a longer infection period the less concentrated phage solution reached the same 93% cell removal value.
Conclusions:  Phages are efficient in the eradication of bacterial cells at the early stage of biofilm formation and their presence at the surface did not allow bacterial recolonization of the surface.
Significance and Impact of the Study:  To date, no published studies have been made concerning in situ and real time quantification of cell removal from surfaces due to phage action.  相似文献   
99.
A common objective in protein engineering is the enhancement of the thermodynamic properties of recombinant proteins for possible applications in nanobiotechnology. The performance of proteins can be improved by the rational design of chimeras that contain structural elements with the desired properties, thus resulting in a more effective exploitation of protein folds designed by nature. In this paper, we report the design and characterization of an ultra-stable self-refolding protein fiber, which rapidly reassembles in solution after denaturation induced by harsh chemical treatment or high temperature. This engineered protein fiber was constructed on the molecular framework of bacteriophage P22 tail needle gp26, by fusing its helical core to the foldon domain of phage T4 fibritin. Using protein engineering, we rationally permuted the foldon upstream and downstream from the gp26 helical core and characterized gp26-foldon chimeras by biophysical analysis. Our data demonstrate that one specific protein chimera containing the foldon immediately downstream from the gp26 helical core, gp26(1-140)-F, displays the highest thermodynamic and structural stability and refolds spontaneously in solution following denaturation. The gp26-foldon chimeric fiber remains stable in 6.0 M guanidine hydrochloride, or at 80 degrees C, rapidly refolds after denaturation, and has both N and C termini accessible for chemical/biological modification, thereby representing an ideal platform for the design of self-assembling nanoblocks.  相似文献   
100.
抗噬菌体工程菌的筛选   总被引:1,自引:0,他引:1  
噬菌体污染常引起溶菌,造成人力物力浪费。应用自发突变的原理成功地从溶菌液中筛选到抗噬菌体的工程菌株;在发酵罐中培养,该菌株生长行为和表达水平没有变化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号