首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   11篇
  国内免费   9篇
  153篇
  2023年   4篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   8篇
  2013年   16篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
排序方式: 共有153条查询结果,搜索用时 0 毫秒
151.
Antineutrophil cytoplasmic antibodies directed against bactericidal/permeability-increasing protein (BPI), an inhibitor of a lipopolysaccharide of gram-negative bacteria, are a common feature of chronic neutrophilic inflammatory processes such as cystic fibrosis. We investigated whether serum and salivary anti-BPI autoantibodies also appear in the course of acute pneumonia in 24 otherwise healthy children. Nine (38%) and four (17%) patients had detectable serum anti-BPI immunoglobulin G (IgG) (≥4 IU mL−1) and IgA (ratio≥1.2), respectively, on the day of hospital admission (day 0). There was no increase in the rate of occurrence or the concentration of these antibodies in the convalescent sera obtained on day 30. The presence of anti-BPI IgG on admission did not correlate with inflammatory markers (peripheral white blood cell count, C-reactive protein) or temperature on admission. Also, salivary anti-BPI IgA, determined on days 0, 3–5 and 30, did not appear during the course of acute pneumonia. In summary, a substantial proportion of previously healthy children have pre-existing anti-BPI IgG autoantibodies. Acute neutrophilic infection, i.e. pneumonia, however, neither triggered the appearance of new antibodies nor boosted the concentrations of pre-existing ones. Thus, in typical acute pneumonia in children, autoantibodies directed against BPI may not have clinical significance.  相似文献   
152.
Novel peptide 33mers have been designed by incorporating β-conformation stabilizing residues from the β-sheet domains of α-chemokines and functionally important residues from the β-sheet domain of human neutrophil bactericidal protein (B/PI). B/PI is known for its ability to kill bacteria and to neutralize the action of bacterial endotoxin (lipopolysaccharide, LPS) which can induce septic shock leading to eventual death. Here, the goal was to make short linear peptides which demonstrate good β-sheet folding and maintain bioactivity as in native B/PI. A library of 24 peptide 33mers (βpep-1 to βpep-24) were synthesized with various amino acid substitutions. CD and NMR data acquired in aqueous solution indicate that βpep peptides form β-sheet structure to varying degrees and self-associate as dimers and tetramers like the α-chemokines. Bactericidal activity toward Gram-negative Pseudomonas aeruginosa was tested, and βpep-19 was found to be only about 5-fold less potent (62% kill at 1.2×10?7 M) than native B/PI (80% kill at 2.9×10?8 M). At LPS neutralization, βpep-2 and -23 were found to be most active (66–78% effective at 1.2×10?6 M), being only about 50–100-fold less active than B/PI (50% at 1.5×10?8 M). In terms of structure–activity relations, β-sheet structural stability correlates with the capacity to neutralize LPS, but not with bactericidal activity. Although a net positive charge is necessary for activity, it is not sufficient for optimal activity. Hydrophobic residues tend to influence activities indirectly by affecting structural stability. Furthermore, results show that sequentially and spatially related residues from the β-sheet domain of native B/PI can be designed into short linear peptides which show good β-sheet folding and retain much of the native activity. This research contributes to the development of solutions to the problem of multiple drug-resistant, opportunistic microorganisms like P. aeruginosa and of agents effective at neutralizing bacterial endotoxin.  相似文献   
153.
Beta-1,3-D-polyglucose derivatives protect mice against otherwise lethal bacterial infections. This protective effect has been considered to be mediated through mononuclear phagocytes. By using radioactive labelling, we localized the beta-1,3-D-polyglucose derivatized microbeads (GDM) during the period following injection. The GDM was recovered mainly in the milky spots of the omentum. In animals treated with GDM, the total white cell number was significantly increased in peritoneal fluid of mice before and after challenge with E. coli. Bacterial counts in peritoneal fluid of GDM treated animals declined to zero after 24 h. In untreated animals there was a slight increase in bacterial counts until the animals died after about 12 h. Mouse peritoneal macrophages stimulated with GDM released significant amounts of IL-1 and PGE2. There was no significant release of TNF. Levels of IL-1 and PGE2 in peritoneal fluid increased significantly during the first 48 h after treatment with GDM. There was no increase of levels of TNF. After challenge with E. coli, the levels of IL-1, TNF, and PGE2 were significantly lower compared with control animals. In untreated animals the levels of IL-1 and TNF remained elevated until the animals died after about 12 h. These studies demonstrate that the raised levels of arachidonic acid metabolites after pretreatment with GDM or AG seems to inhibit the otherwise lethal elevation of IL-1 and TNF in body fluids which is seen in untreated animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号