首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10572篇
  免费   1674篇
  国内免费   2614篇
  2024年   116篇
  2023年   436篇
  2022年   395篇
  2021年   407篇
  2020年   606篇
  2019年   642篇
  2018年   694篇
  2017年   630篇
  2016年   622篇
  2015年   646篇
  2014年   670篇
  2013年   839篇
  2012年   534篇
  2011年   586篇
  2010年   436篇
  2009年   565篇
  2008年   567篇
  2007年   573篇
  2006年   540篇
  2005年   436篇
  2004年   395篇
  2003年   373篇
  2002年   393篇
  2001年   329篇
  2000年   253篇
  1999年   237篇
  1998年   227篇
  1997年   175篇
  1996年   181篇
  1995年   153篇
  1994年   160篇
  1993年   128篇
  1992年   128篇
  1991年   84篇
  1990年   79篇
  1989年   88篇
  1988年   62篇
  1987年   53篇
  1986年   56篇
  1985年   69篇
  1984年   46篇
  1983年   34篇
  1982年   54篇
  1981年   35篇
  1980年   28篇
  1979年   26篇
  1978年   28篇
  1977年   9篇
  1976年   16篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
91.
Column chromatography of the Escherichia coli mannitol permease (mannitol-specific enzyme II of the phosphotransferase system) in the presence of deoxycholate has revealed that the active permease can exist in at least two association states with apparent molecular weights consistent with a monomer and a dimer. The monomeric conformation is favored by the presence of mannitol and by the phosphoenolpyruvate (PEP)-dependent phosphorylation of the protein. The dimer is stabilized by inorganic phosphate (Pi), which also stimulates phospho-exchange between mannitol and mannitol 1-phosphate (a partial reaction in the overall PEP-dependent phosphorylation of mannitol). Kinetic analysis of the phospho-exchange reaction revealed that Pi stimulates phospho-exchange by increasing the Vmax of the reaction. A kinetic model for mannitol permease function is presented involving both conformations of the permease. The monomer (or a less-stable conformation of the dimer) is hypothesized to be involved in the initial mannitol-binding and PEP-dependent phosphorylation steps, while the stably associated dimer is suggested to participate in later steps involving direct phosphotransfer between the permease, mannitol and mannitol 1-phosphate.  相似文献   
92.
Factors affecting the production of platelet activating factor (PAF) by mouse embryos during culture in vitro were investigated. Detectable levels of embryo-derived PAF were produced within 1-4 hr with maximum PAF activity being observed after 6 hr of culture in vitro. The amount of PAF detected in media after 24 hr of culture of two-cell embryos was equivalent to 12.8 ng PAF/embryo. However, differences in activity were apparent with increased time in culture. Reduced synthesis of PAF during culture in vitro was supported by the observation that morulae stage embryos collected fresh from the reproductive tract displayed more PAF activity than morulae resulting from the 48 hr culture of two-cell embryos. In addition to determining production characteristics of PAF by embryos, we also show that the production of CO2 from carbon-1 position of lactate is positively correlated with the ability of embryos to develop during subsequent culture in vitro and therefore could be used as a measure of embryo viability. Furthermore, culture of embryos in media supplemented with PAF resulted in an increase in lactate utilization demonstrating a direct effect of PAF on the embryo. As PAF is produced by preimplantation embryos, an autocoid role of PAF in regulating embryo development is implicated. Therefore, the reduced production of PAF by embryos in vitro may explain the decreased viability of embryos commonly observed following their culture in vitro.  相似文献   
93.
Methanogenesis and microbial lipid synthesis in anoxic salt marsh sediments   总被引:1,自引:0,他引:1  
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   
94.
Instantaneous rates of (soil + root) respiration were measured periodically during grain filling in sunflower crops that were i) irrigated at weekly intervals and ii) subjected to water stress for the last 25 days of the 40-day grain filling period. Daily (soil + root) respiration was calculated using instantaneous respiration rates, an empirically determined temperature response function, and diurnal records of soil temperature. Daily soil respiration was estimated using empirically determined functions linking soil respiration to soil temperature and water content. Between anthesis and maturity, daily root respiration of the irrigated crop dropped by about one half from ca. 1.8 g C m-2 d-1, exhibiting a strong association with daily crop gross photosynthesis. Water stress brought about a rapid decrease in root respiration, which fell to about 0.1 g C m-2 d-1 at maturity. Root respiration during grain filling was 46 and 30 g C m-2 for irrigated and stressed crops, respectively.  相似文献   
95.
Monoterpene glycoside biosynthesis in detached grape berries grown in vitro   总被引:2,自引:0,他引:2  
A procedure for the culture in vitro of isolated small berries of Vitis vinifera L. cv. Muscat of Alexandria in a Murashige and Skoog basal medium supplemented with N6-benzyladenine and indoleacetic acid is described. Berries developed well in culture during 60 days and tripled in size, but remained green and smaller than normal berries grown in vivo. Some callus formed on the distal end of the berry, and where major skin damage occurred, callus emerged from the cracked berries. In order to examine their biosynthetic competency, berries which were previously cultured in vitro for 60 days were incubated for 48 h in a Murashige and Skoog medium containing a [14C]-labelled water-soluble fraction. This fraction was isolated from grape berries located adjacent to a leaf that had been exposed to gaseous 14CO2 in full sunlight for 5 h. The berries were then recultured for 48 h after which a glycosidic fraction was isolated on a C18 reversed phase column and further separated by thin layer chromatography (TLC). The major labelled band corresponded to the geranyl-β-rutinoside marker, indicating that grape berries have the ability to synthesize monoterpene glycosides. This band also consisted of other monoterpene glycosides as revealed by the gas chromatography-mass spectrometry (GC-MS) analysis of their aglycones (released by enzymatic hydrolysis).  相似文献   
96.
From among 125 strains of fluorescent and 52 strains of nonfluorescent bacteria initially screened in the laboratory for their antibiosis towards the bacterial wilt pathogen, Pseudomonas solanacearum, strain Pfcp of Pseudomonas fluorescens and strains B33 and B36 of Bacillus spp., were chosen and evaluated further in greenhouse and field tests. Pfcp treated banana (Musa balbisiana), eggplant and tomato plants were protected from wilt upto 50, 61 and 95% in greenhouse and upto 50, 49 and 36% respectively in field. Protection afforded by the Bacillus strains was lower. In bacteria-treated plants which were subsequently inoculated with P. solanacearum plant height and biomass values increased and were close to those of nontreated and noninoculated control plants.  相似文献   
97.
Small diameter (<1.0-mm) Acer saccharum Marsh roots were separated into white, brown and woody development state classes and analyzed for total N and C concentrations in April, July and October of 1988. White roots had greater concentrations of N and C than either brown or woody roots at each sampling date, and the N concentration of brown roots was consistently greater than that of woody roots. There were no temporal changes in N concentrations in any of the roots. C was slightly elevated in mid-summer in all three classes of roots. The data suggest the possible existence of an N translocation mechanism in ageing and developing fine roots. More research should be undertaken to establish the mechanisms of N loss in developing fine roots.  相似文献   
98.
Effects of three herbicides on soil microbial biomass and activity   总被引:8,自引:0,他引:8  
Three post-emergence herbicides (2,4-D, picloram and glyphosate) were applied to samples of an Alberta agricultural soil at concentrations of 0, 2, 20, and 200 μg g−1. The effects of these chemicals on certain microbial variables was monitored over 27 days. All herbicides caused enhancement of basal respiration but only for 9 days following application, and only for concentrations of 200 μg g−1. Substrate-induced respiration was temporarily depressed by 200 μg g−1 picloram and 2,4-D, and briefly enhanced by 200 μg g−1 glyphosate. It is concluded that because changes in microbial variables only occurred at herbicide concentrations of much higher than that which occurs following field application, the side-effects of these chemicals is probably of little ecological significance.  相似文献   
99.
The major source of substrates for microbial activity in the ectorhizosphere and on the rhizoplane are rhizodeposition products. They are composed of exudates, lysates, mucilage, secretions and dead cell material, as well as gases including respiratory CO2. Depending on plant species, age and environmental conditions, these can account for up to 40% (or more) of the dry matter produced by plants. The microbial populations colonizing the endorhizosphere, including mycorrhizae, pathogens and symbiotic N2-fixers have greater access to the total pool of carbon including that recently derived from photosynthesis. Utilization of rhizodeposition products induces at least a transient increase in soil biomass but a sustained increase depends on the state of the native soil biomass, the flow of other metabolites from the soil to the rhizosphere and the water relations of the soil. In addition, the phenomena of oligotrophy, cryptic growth, plasmolysis, dormancy and arrested metabolism can all influence the longevity of rhizosphere organisms. With this background, microbial growth in the rhizosphere will be discussed.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号