首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5626篇
  免费   348篇
  国内免费   528篇
  2024年   30篇
  2023年   113篇
  2022年   182篇
  2021年   210篇
  2020年   186篇
  2019年   218篇
  2018年   207篇
  2017年   164篇
  2016年   157篇
  2015年   188篇
  2014年   370篇
  2013年   478篇
  2012年   258篇
  2011年   360篇
  2010年   319篇
  2009年   310篇
  2008年   331篇
  2007年   349篇
  2006年   352篇
  2005年   256篇
  2004年   229篇
  2003年   177篇
  2002年   209篇
  2001年   90篇
  2000年   51篇
  1999年   52篇
  1998年   67篇
  1997年   44篇
  1996年   54篇
  1995年   35篇
  1994年   37篇
  1993年   38篇
  1992年   32篇
  1991年   22篇
  1990年   22篇
  1989年   29篇
  1988年   11篇
  1987年   18篇
  1986年   16篇
  1985年   25篇
  1984年   35篇
  1983年   28篇
  1982年   26篇
  1981年   21篇
  1980年   19篇
  1979年   11篇
  1978年   15篇
  1977年   10篇
  1975年   13篇
  1972年   10篇
排序方式: 共有6502条查询结果,搜索用时 46 毫秒
131.
凋萎病是制约杨梅产业发展的严重病害。为了有效防控凋萎病,本研究分析了杨梅健康和感染凋萎病树体各部位及根表土和根围土中细菌和真菌群落的丰富度与多样性的差异。结果表明: 与健康树相比,病树根围土、根表土、根、枝干、枝皮和叶片的细菌和真菌丰富度均发生了显著变化,其中,根表土细菌和枝皮内真菌的丰富度和多样性均显著降低,而枝皮内细菌和根表土的真菌丰富度和多样性均显著升高。病树各部位及根表、根围土细菌和真菌的优势菌相对丰度在门、纲和属水平上发生了明显的变化,在病树枝干、根和根表土中的假单胞菌属及根表土、根围土中的镰刀菌属的相对丰度明显降低,病树根表土及根围土中青霉菌属的相对丰度明显增加。与凋萎病菌同属的拟盘多毛孢菌在病树根内显著减少,而在其他位置均大量增殖,其相对丰度与多数相对丰度较高的真菌呈正相关。本研究结果将为开发杨梅凋萎病的生态改良、培育健康树体和生物防治技术提供有效的理论依据。  相似文献   
132.
133.
Overwintering is a challenging period in the life of temperate insects. A limited energy budget characteristic of this period can result in reduced investment in immune system. Here, we investigated selected physiological and immunological parameters in laboratory‐reared and field‐collected harlequin ladybirds (Harmonia axyridis). For laboratory‐reared beetles, we focused on the effects of winter temperature regime (cold, average, or warm winter) on total haemocyte concentration aiming to investigate potential effects of ongoing climate change on immune system in overwintering insects. We recorded strong reduction in haemocyte concentration during winter; however, there were only limited effects of winter temperature regime on changes in haemocyte concentration in the course of overwintering. For field‐collected beetles, we measured additional parameters, specifically: total protein concentration, antimicrobial activity against Escherichia coli, and haemocyte concentration before and after overwintering. The field experiment did not investigate effects of winter temperature, but focused on changes in inducibility of insect immune system during overwintering, that is, measured parameters were compared between naïve beetles and those challenged by Escherichia coli. Haemocyte concentration decreased during overwintering, but only in individuals challenged by Escherichia coli. Prior to overwintering, the challenged beetles had a significantly higher haemocyte concentration compared to naïve beetles, whereas no difference was observed after overwintering. A similar pattern was observed also for antimicrobial activity against Escherichia coli as challenged beetles outperformed naïve beetles before overwintering, but not after winter. In both sexes, total protein concentration increased in the course of overwintering, but females had a significantly higher total protein concentration in their hemolymph compared to males. In general, our results revealed that insect’s ability to respond to an immune challenge is significantly reduced in the course of overwintering.  相似文献   
134.
Acetyl-CoA carboxylase α (ACCα) is a major rate-limiting enzyme in the biogenesis of long-chain fatty acids. It can catalyze the carboxylation of acetyl-CoA to form malonyl-CoA that plays a key role in the regulation of fatty acid metabolism. The objective of the present study was to investigate the associations of ACCα gene polymorphisms with chicken growth and body composition traits. The Northeast Agricultural University broiler lines divergently selected for abdominal fat content and the Northeast Agricultural University F2 Resource Population were used in the current study. Body weight and body composition traits were measured in the aforementioned two populations. A synonymous mutation was detected in the exon 19 region of ACCα gene, then polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was developed to genotype all the individuals derived from the aforementioned populations. Association analysis revealed that the polymorphism was associated with abdominal fat weight and percentage of abdominal fat in the two populations. The results suggested that ACCα gene could be a candidate locus or linked to a major gene that affects abdominal fat content in the chicken.  相似文献   
135.
Escherichia coli YicI is a retaining α-xylosidase, which strictly recognizes the α-xylosyl moiety at the non-reducing end, belonging to glycoside hydrolase family 31 (GH 31). We have elucidated key residues determining the substrate specificity at both glycone and aglycone sites of Escherichia coli α-xylosidase (YicI). Detection of distinguishing features between α-xylosidases and α-glucosidases of GH 31 in their close evolutionary relationship has been used for the modification of protein function, converting YicI into an α-glucosidase. Aglycone specificity has been characterized by its transxylosylation ability. YicI exhibits a preference for aldopyranosyl sugars having equatorial 4-OH as the acceptor substrate with 1,6 regioselectivity, resulting in transfer products. The disaccharide transfer products of YicI, α-d-Xylp-(1→6)-d-Manp, α-d-Xylp-(1→6)-d-Fruf, and α-d-Xylp-(1→3)-d-Frup, are novel oligosaccharides, which have never been reported. The transxylosylation products are moderately inhibitory towards intestinal α-glucosidases.  相似文献   
136.
137.
M. Ofek  S. Ruppel 《Plant biosystems》2013,147(3):352-362
Abstract

Differences between various inherent physiological characteristics of lateral roots and of taproots of faba bean plants (Vicia faba L.) have been described in the literature. The question as to whether distinct bacterial communities inhabit each of those root types calls for further investigation. This question was tackled using aeroponically grown plants, i.e., plants that were grown under conditions as homogeneous as possible. Samples of the apical 5 cm of taproots and of lateral roots were compared. Metabolic fingerprints of root bacterial communities were analyzed using the Biolog® assay. Specificity of colonization of the different root types by specific bacterial taxa was examined by the Real-Time Polymerase Chain Reaction (PCR) method. Root bacterial communities produced distinct metabolic fingerprints for each of the two root types. Herbaspirillum spp. were found to be associated with lateral roots but not with taproots both under non-saline and saline (50 mM NaCl) conditions. No significant differences were found in the abundance of bacteria with respect to either root type or salinity. It is concluded that different root types, even within single root systems, differ not only in their physiological traits but also in their bacterial associations. Such associations might have adaptive advantages.  相似文献   
138.
In this study, the ability to tailor the peptide-binding specificity of an RNA was investigated. First, variants of the Rev-response element (RRE) RNA with different specificities toward the natural binding partner, Rev, and two RRE-binding aptamers, the RSG-1.2 and the Kl peptides, were identified. Next, hybrid RRE mutants with combinations of two sets of specificity-altering substitutions were tested for peptide-binding specificity. It was shown that in most cases the results of the combination of individual mutations were of an additive nature, therefore providing a way to manipulate the peptide-binding specificity of an RNA in a predictable manner.  相似文献   
139.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   
140.
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号