首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   142篇
  国内免费   47篇
  2024年   4篇
  2023年   37篇
  2022年   55篇
  2021年   73篇
  2020年   57篇
  2019年   91篇
  2018年   76篇
  2017年   50篇
  2016年   64篇
  2015年   72篇
  2014年   116篇
  2013年   126篇
  2012年   61篇
  2011年   61篇
  2010年   56篇
  2009年   46篇
  2008年   65篇
  2007年   54篇
  2006年   59篇
  2005年   44篇
  2004年   55篇
  2003年   38篇
  2002年   37篇
  2001年   20篇
  2000年   12篇
  1999年   15篇
  1998年   11篇
  1997年   13篇
  1996年   16篇
  1995年   13篇
  1994年   11篇
  1993年   6篇
  1992年   17篇
  1991年   7篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
排序方式: 共有1578条查询结果,搜索用时 31 毫秒
111.
A constrained mixture theory model was developed and used to estimate remodeling of F-actin in vascular smooth muscle cells that were subjected to 10% equibiaxial stretching for up to 30min. The model was based on a synthesis of data on time-dependent changes in atomic force microscopy measured cell stiffness and immunofluorescence measured focal adhesion associated vinculin as well as data on stress fiber stiffness and pre-stretch. Results suggest that an observed acute (after 2min of stretching) increase in cell stiffness is consistent with an increased stretch of the originally present F-actin plus an assembly of new F-actin having nearly homeostatic values of stretch. Moreover, the subsequent (after 30min of stretching) decrease in cell stiffness back towards the baseline value is consistent with a replacement of the overstretched original filaments with the new (reassembled), less stretched filaments. That is, overall cell response is consistent with a recently proposed concept of "tensional homeostasis" whereby cells seek to maintain constant certain mechanical factors via a remodeling of intracellular and transmembrane proteins. Although there is a need to refine the model based on more comprehensive data sets, using multiple experimental approaches, the present results suggest that a constrained mixture theory can capture salient features of the dynamics of F-actin remodeling and that it offers some advantages over many past methods of modeling, particularly those based on classical linearized viscoelasticity.  相似文献   
112.
Interaction of tau protein with the dynactin complex   总被引:1,自引:0,他引:1  
Tau is an axonal microtubule-associated protein involved in microtubule assembly and stabilization. Mutations in Tau cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and tau aggregates are present in Alzheimer's disease and other tauopathies. The mechanisms leading from tau dysfunction to neurodegeneration are still debated. The dynein-activator complex dynactin has an essential role in axonal transport and mutations in its gene are associated with lower motor neuron disease. We show here for the first time that the N-terminal projection domain of tau binds to the C-terminus of the p150 subunit of the dynactin complex. Tau and dynactin show extensive colocalization, and the attachment of the dynactin complex to microtubules is enhanced by tau. Mutations of a conserved arginine residue in the N-terminus of tau, found in patients with FTDP-17, affect its binding to dynactin, which is abnormally distributed in the retinal ganglion cell axons of transgenic mice expressing human tau with a mutation in the microtubule-binding domain. These findings, which suggest a direct involvement of tau in axonal transport, have implications for understanding the pathogenesis of tauopathies.  相似文献   
113.
Marked changes in mice pubic symphysis occur by the end of pregnancy. Tissue remodeling involves a dynamic balance between cell proliferation and programmed cell death as well as changes in the extracellular matrix components. Therefore, it is important to consider both of these cellular behaviors when investigating the mechanism that regulates interpubic tissue remodeling, growth during late pregnancy and partus ensuring involution during the postpartum period. Proliferating and programmed death cells were identified by immunohistochemistry (proliferating cell nuclear antigen and TUNEL detection, respectively) and the rates at which these processes occurred were determined by morphometric analysis. The results demonstrated that cellular proliferation was intense during the period of ligament formation, from D15 to D18, thereafter abruptly declining on D19. From parturition (D19) onwards, an ever-increasing decline in the cellular proliferation levels could be observed. The quantitative analyses of cellular death showed opposite results when compared to cellular proliferation. During early pregnancy the cycle of cellular renovation was clearly proliferative and during late mouse pregnancy the cycle was directed by programmed cellular death. Although the high levels of cellular death during postpartum involution could be shown by the TUNEL-positive cells, we were unable to observed picnotic nucleus at the light microscopy.  相似文献   
114.
115.
Slotnick B 《Chemical senses》2007,32(2):173-181
Rats trained to detect propyl acetate and valeric acid and to discriminate between propyl acetate and amyl acetate and between valeric acid and butyric acid were injected with a low dose of 3-methyl indole, a treatment that produces well-defined and selective deafferentation of the olfactory bulbs. Treatment completely deafferented most but not all bulbar loci for aliphatic acids and at least disrupted those for propyl and amyl acetate. In posttreatment tests, experimental rats performed somewhat but not significantly more poorly than controls and about as well on the acid detection and discrimination tasks as on the corresponding acetate tests.  相似文献   
116.
Mechanical unloading causes detrimental effects on the skeleton, but the underlying mechanisms are still unclear. We investigated the effect of microgravity on osteoblast ability to regulate osteoclastogenesis. Mouse osteoblast primary cultures were grown for 24 h at unit gravity or under simulated microgravity, using the NASA-developed Rotating Wall Vessel bioreactor. Conditioned media (CM) from osteoblasts subjected to microgravity increased osteoclastogenesis and bone resorption in mouse bone marrow cultures. In these osteoblasts, the RANKL/OPG ratio was higher relative to 1g. Consistently, treatment with high concentrations of OPG-inhibited osteoclastogenesis and bone resorption in the presence of CM arising from osteoblasts cultured under microgravity. Microgravity failed to affect osteoblast differentiation and function in the time frame of the experiment, as we found no effect on alkaline phosphatase mRNA and activity, nor on Runx2, osteocalcin, osteopontin, and collagen1A2 mRNA expression. In contrast, microgravity induced a time dependent increase of ERK-1/2 phosphorylation, while phospho-p38 and phospho-JNK remained unchanged. Apoptosis, revealed by bis-benzimide staining, was similar among the various gravity conditions, while it was increased under microgravity after treatment with the MEK-1/2 inhibitor, PD98059, suggesting a protection role by ERK-1/2 against cell death. In conclusion, microgravity is capable to indirectly stimulate osteoclast formation and activity by regulating osteoblast secretion of crucial regulatory factors such as RANKL and OPG. We hypothesize that this mechanism could contribute to bone loss in individuals subjected to weightlessness and other unloading conditions.  相似文献   
117.
The dynamics of axonal transport are often colloquially described using highway traffic as a model system. Examination of the physics of traffic patterns, with emphasis on traffic jams and accidents, provides unique and perhaps counterintuitive insight into the aberrant accumulation of neurofilaments that accompanies amyotrophic lateral sclerosis/motor neuron disease.  相似文献   
118.
119.
The functional integrity of neurons requires the bidirectional active transport of synaptic vesicles (SVs) in axons. The kinesin motor KIF1A transports SVs from somas to stable SV clusters at synapses, while dynein moves them in the opposite direction. However, it is unclear how SV transport is regulated and how SVs at clusters interact with motor proteins. We addressed these questions by isolating a rare temperature-sensitive allele of Caenorhabditis elegans unc-104 (KIF1A) that allowed us to manipulate SV levels in axons and dendrites. Growth at 20° and 14° resulted in locomotion rates that were ∼3 and 50% of wild type, respectively, with similar effects on axonal SV levels. Corresponding with the loss of SVs from axons, mutants grown at 14° and 20° showed a 10- and 24-fold dynein-dependent accumulation of SVs in their dendrites. Mutants grown at 14° and switched to 25° showed an abrupt irreversible 50% decrease in locomotion and a 50% loss of SVs from the synaptic region 12-hr post-shift, with no further decreases at later time points, suggesting that the remaining clustered SVs are stable and resistant to retrograde removal by dynein. The data further showed that the synapse-assembly proteins SYD-1, SYD-2, and SAD-1 protected SV clusters from degradation by motor proteins. In syd-1, syd-2, and sad-1 mutants, SVs accumulate in an UNC-104-dependent manner in the distal axon region that normally lacks SVs. In addition to their roles in SV cluster stability, all three proteins also regulate SV transport.  相似文献   
120.
A lesion to the rat rubrospinal tract is a model for traumatic spinal cord lesions and results in atrophy of the red nucleus neurons, axonal dieback, and locomotor deficits. In this study, we used adeno‐associated virus (AAV)‐mediated over‐expression of BAG1 and ROCK2‐shRNA in the red nucleus to trace [by co‐expression of enhanced green fluorescent protein (EGFP)] and treat the rubrospinal tract after unilateral dorsal hemisection. We investigated the effects of targeted gene therapy on neuronal survival, axonal sprouting of the rubrospinal tract, and motor recovery 12 weeks after unilateral dorsal hemisection at Th8 in rats. In addition to the evaluation of BAG1 and ROCK2 as therapeutic targets in spinal cord injury, we aimed to demonstrate the feasibility and the limits of an AAV‐mediated protein over‐expression versus AAV.shRNA‐mediated down‐regulation in this traumatic CNS lesion model. Our results demonstrate that BAG1 and ROCK2‐shRNA both promote neuronal survival of red nucleus neurons and enhance axonal sprouting proximal to the lesion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号