首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   45篇
  国内免费   12篇
  2023年   22篇
  2022年   17篇
  2021年   30篇
  2020年   19篇
  2019年   26篇
  2018年   24篇
  2017年   22篇
  2016年   14篇
  2015年   31篇
  2014年   40篇
  2013年   30篇
  2012年   21篇
  2011年   32篇
  2010年   22篇
  2009年   19篇
  2008年   24篇
  2007年   22篇
  2006年   20篇
  2005年   16篇
  2004年   13篇
  2003年   16篇
  2002年   23篇
  2001年   13篇
  2000年   15篇
  1999年   9篇
  1998年   15篇
  1997年   14篇
  1996年   10篇
  1995年   11篇
  1994年   11篇
  1993年   6篇
  1992年   9篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   8篇
  1982年   16篇
  1981年   13篇
  1980年   5篇
  1979年   6篇
  1976年   2篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1970年   2篇
排序方式: 共有723条查询结果,搜索用时 343 毫秒
71.
Axonal receptors for class 3 semaphorins (Sema3s) are heterocomplexes of neuropilins (Nrps) and Plexin-As signalling coreceptors. In the developing cerebral cortex, the Ig superfamily cell adhesion molecule L1 associates with Nrp1. Intriguingly, the genetic removal of L1 blocks axon responses of cortical neurons to Sema3A in vitro despite the expression of Plexin-As in the cortex, suggesting either that L1 substitutes for Plexin-As or that L1 and Plexin-A are both required and mediate distinct roles. We report that association of Nrp1 with L1 but not Plexin-As mediates the recruitment and activation of a Sema3A-induced focal adhesion kinase-mitogen-activated protein kinase cascade. This signalling downstream of L1 is needed for the disassembly of adherent points formed in growth cones and subsequently their collapse response to Sema3A. Plexin-As and L1 are coexpressed and present in common complexes in cortical neurons and both dominant-negative forms of Plexin-A and L1 impair their response to Sema3A. Consistently, Nrp1-expressing cortical projections are defective in mice lacking Plexin-A3, Plexin-A4 or L1. This reveals that specific signalling activities downstream of L1 and Plexin-As cooperate for mediating the axon guidance effects of Sema3A.  相似文献   
72.
During development, sensory thalamocortical (TC) axons grow into the neocortex and terminate primarily in layer 4. To study the molecular mechanism that underlies lamina-specific TC axon termination, we investigated the responsiveness of TC axons to ephrin-A5, semaphorin-7A (Sema7A) and kit ligand (KL), which are expressed in the upper layers of the developing cortex. Dissociated cells of the dorsal thalamus from embryonic rat brain were cultured on dishes that were coated with preclustered Fc-tagged extracellular domains of these molecules. Each protein was found to promote TC axon growth in a dose-dependent fashion of a bell-shaped curve. Any combination of the three proteins showed a cooperative effect in lower concentrations but not in higher concentrations, suggesting that their growth-promoting activities act in a common pathway. The effect of spatial distributions of these proteins was further tested on a filter membrane, in which these proteins were printed at a size that recapitulates the scale of laminar thickness in vivo, using a novel protein-printing technique, Simple-To-mAke Micropore Protein-Printing (STAMP2) method. The results demonstrated that TC axons grew massively on the laminin-coated region but were prevented from invading the adjacent ephrin-A5-printed region, suggesting that TC axons detect relative differences in the growth effect between these regions. Moreover, the inhibitory action of ephrin-A5 was enhanced by copresence with KL and Sema7A. Together, these results suggest that the lamina-specific TC axon targeting mechanism involves growth-inhibitory activity by multiple molecules in the upper layers and detection in the molecular environments between the upper and deep layers.  相似文献   
73.
Sorting and Transport of Alpha Herpesviruses in Axons   总被引:1,自引:0,他引:1  
The alpha herpesviruses, a subfamily of the herpesviruses, are neurotropic pathogens found associated with most mammalian species. The prototypic member of this subfamily is herpes simplex virus type 1, the causative agent of recurrent cold sores in humans. The mild nature of this disease is a testament to the complex and highly regulated life cycle of the alpha herpesviruses. The cellular mechanisms used by these viruses to disseminate infection in the nervous system are beginning to be understood. Here, we overview the life cycle of alpha herpesviruses with an emphasis on assembly and transport of viral particles in neurons.  相似文献   
74.
《Developmental cell》2023,58(8):660-676.e7
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   
75.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
76.
77.
78.
Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts.  相似文献   
79.
Abstract: Using video-enhanced microscopy and a pulse-radiolabeling paradigm, we show that proteins synthesized in the medial giant axon cell body of the crayfish ( Procambarus clarkii ) are delivered to the axon via fast (∼62 mm/day) and slow (∼0.8 mm/day) transport components. These data confirm that the medial giant axon cell body provides protein to the axon in a manner similar to that reported for mammalian axons. Unlike mammalian axons, the distal (anucleate) portion of a medial giant axon remains intact and functional for >7 months after severance. This axonal viability persists long after fast transport has ceased and after the slow wave front of radiolabeled protein has reached the terminals. These data are consistent with the hypothesis that another source (i.e., local glial cells) provides a significant amount of protein to supplement that delivered to the medial giant axon by its cell body.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号