首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   45篇
  国内免费   12篇
  2023年   22篇
  2022年   17篇
  2021年   30篇
  2020年   19篇
  2019年   26篇
  2018年   24篇
  2017年   22篇
  2016年   14篇
  2015年   31篇
  2014年   40篇
  2013年   30篇
  2012年   21篇
  2011年   32篇
  2010年   22篇
  2009年   19篇
  2008年   24篇
  2007年   22篇
  2006年   20篇
  2005年   16篇
  2004年   13篇
  2003年   16篇
  2002年   23篇
  2001年   13篇
  2000年   15篇
  1999年   9篇
  1998年   15篇
  1997年   14篇
  1996年   10篇
  1995年   11篇
  1994年   11篇
  1993年   6篇
  1992年   9篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   8篇
  1982年   16篇
  1981年   13篇
  1980年   5篇
  1979年   6篇
  1976年   2篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1970年   2篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
21.
The diversity of axon guidance (AG) receptors reflects gains in complexity of the animal nervous system during evolution. Members of the Roundabout (Robo) family of receptors interact with Slit proteins and play important roles in many developmental processes, including AG and neural crest cell migration. There are four members of the Robo gene family. However, the evolutionary history of Robo family genes remain obscure. We analyzed the distribution of Robo family members in metazoan species ranging in complexity from hydras to humans. We undertook a phylogenetic analysis in metazoans, synteny analysis, and ancestral chromosome mapping in vertebrates, and detected selection pressure and functional divergence among four mammalian Robo paralogs. Based on our analysis, we proposed that the ancestral Robo gene could have undergone a tandem duplication in the vertebrate ancestor; then one round of whole genome duplication events occurred before the divergence of ancestral lamprey and gnathostome, generating four paralogs in early vertebrates. Robo4 paralog underwent segmental loss in the following evolutionary process. Our results showed that Robo3 paralog is under more powerful purifying selection pressure compared with other three paralogs, which could correlate with its unique expression pattern and function. Furthermore, we found four sites under positive selection pressure on the Ig1‐2 domains of Robo4 that might interfere with its binding to Slits ligand. Diverge analysis at the amino acid level showed that Robo4 paralog have relatively greater functional diversifications than other Robo paralogs. This coincides with the fact that Robo4 predominantly functions in vascular endothelial cells but not the nervous system.  相似文献   
22.
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A''s activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.  相似文献   
23.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   
24.
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types.

Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC.

These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.  相似文献   
25.
In the classical view, NMDA receptors (NMDARs) are located postsynaptically and play a pivotal role in excitatory transmission and synaptic plasticity. In developing cerebellar molecular layer interneurons (MLIs) however, NMDARs are known to be solely extra‐ or presynaptic and somewhat poorly expressed. Somatodendritic NMDARs are exclusively activated by glutamate spillover from adjacent synapses, but the mode of activation of axonal NMDARs remains unclear. Our data suggest that a volume transmission is likely to stimulate presynaptic NMDARs (preNMDARs) since NMDA puffs directed to the axon led to inward currents and Ca2+ transients restricted to axonal varicosities. Using local glutamate photoliberation, we show that pre‐ and post‐synaptic NMDARs share the same voltage dependence indicating their containing NR2A/B subunits. Ca2+ transients elicited by NMDA puffs are eventually followed by delayed events reminding of the spontaneous Ca2+ transients (ScaTs) described at the basket cell/Purkinje cell terminals. Moreover, the presence of Ca2+ transients at varicosities located more than 5 μm away from the uncaging site indicates that the activation of preNMDARs sensitizes the Ca2+ stores in adjacent varicosities, a process that is abolished in the presence of a high concentration of ryanodine. Altogether, the data demonstrate that preNMDARs act as high‐gain glutamate detectors.  相似文献   
26.
The p75 neurotrophin receptor (p75NTR) is known to transduce the signal from some myelin-associated axon growth inhibitors, including Nogo and myelin-associated glycoprotein. As ephrin-B3, a member of the ephrin family, is also expressed in myelin and inhibits axon growth, the purpose of this study was to assess the possible involvement of p75NTR in ephrin-B3 signaling. Here, we report that p75NTR is required for the inhibitory effect of ephrin-B3 on neurite growth in vitro. While ephrin-B3 inhibited neurite elongation of embryonic cortical neurons, the neurons with p75NTR knockdown or with EphA4 knockdown were less sensitive to ephrin-B3. Although no direct interaction of p75NTR with ephrin-B3 was observed, Pep5, a peptide that specifically inhibits RhoA activation mediated by p75NTR, reduced the effect of ephrin-B3. Therefore, p75NTR functions as a signal transducer for ephrin-B3. Moreover, axonal regeneration in vivo was induced by Pep5 application after optic nerve crush injury in mice. Thus, Pep5 is a promising agent that contributes to axonal regeneration in the central nervous system.  相似文献   
27.
It is well known that axons of the adult mammalian central nervous system have a very limited ability to regenerate after injury. Therefore, the neurodegenerative process of glaucoma results in irreversible functional deficits, such as blindness. Brimonidine (BMD) is an alpha2-adrenergic receptor agonist that is used commonly to lower intraocular pressure in glaucoma. Although it has been suggested that BMD has neuroprotective effects, the underlying mechanism remains unknown. In this study, we explored the molecular mechanism underlying the neuroprotective effect of BMD in an optic nerve injury (ONI) model. BMD treatment promoted optic nerve regeneration by inducing Erk1/2 phosphorylation after ONI. In addition, an Erk1/2 antagonist suppressed BMD-mediated axonal regeneration. A gene expression analysis revealed that the expression of the neurotrophin receptor gene p75 was increased and that the expression of the tropomyosin receptor kinase B (TrkB) gene was decreased after ONI. BMD treatment abrogated the changes in the expression of these genes. These results indicate that BMD promotes optic nerve regeneration via the activation of Erk1/2.  相似文献   
28.
29.
Changes in neuronal structure can contribute to the plasticity of neuronal connections in the developing and mature nervous system. However, the expectation that they would occur slowly precluded many from considering structural changes as a mechanism underlying synaptic plasticity that occurs over a period of minutes to hours. We took time-lapse confocal images of retinotectal axon arbors to determine the timecourse, magnitude, and distribution of changes in axon arbor structure within living Xenopus tadpoles. Images of axons were collected at intervals of 3 min, 30 min, and 2 h over total observation periods up to 8 h. Branch additions and retractions in arbors imaged at 3- or 30-min intervals were confined to shorter branches. Sites of additions and retractions were distributed throughout the arbor. The average lifetime of branches was about 10 min. Branches of up to 10 μm could be added to the arbor within a single 3-min observation interval. Observations of arbors at 3-min intervals showed rapid changes in the structure of branchtips, including transitions from lamellar growth cones to more streamlined tips, growth cone collapse, and re-extension. Simple branchtips were motile and appeared capable of exploratory behavior when viewed in time-lapse movies. In arbors imaged at 2-h intervals over a total of 8 h, morphological changes included longer branches, tens of microns in length. An average of 50% of the total branch length in the arbor was remodeled within 8 h. The data indicate that the elaboration of the arbor occurs by the random addition of branches throughout the arbor, followed by the selective stabilization of a small fraction of the new branches and the retraction of the majority of branches. Stabilized branches can then elongate and support the addition of more branches. These data show that structural changes in presynaptic axons can occur very rapidly even in complex arbors and can therefore play a role in forms of neuronal plasticity that operate on a timescale of minutes. © 1996 John Wiley & Sons, Inc.  相似文献   
30.
In studies investigating adverse reproductive outcomes associated with video display terminal (VDT) usage, amounts of time spent in front of a VDT or magnetic field (MF) levels in front of the VDT are used as surrogate measures of subject's MF exposure. However, the relevance of such surrogates to actual exposures has not been demonstrated, and the validity of the use of such measures as a surrogate for the actual MF exposure is only speculative. This study examines 1) measurements of MFs at frequencies of approximately 30–1000 Hz at a fixed distance from the VDTs, 2) reported hours of VDT use, and 3) reported distance between the VDT and the subject's waist as surrogate measures for the average MF exposure level of a VDT user during one 8 h workday. The results showed a weak correlation between the average exposure level of a VDT user and the MF 46 cm from a VDT (R = 0.52, n = 67, P < 0.001). This study showed no association between self-reported hours of VDT usage, or self-reported distance between waist and VDT, and the average MF exposures. Moreover, individuals' average MF exposures did not seem to be affected by other variables, such as position of a VDT on the desk, hours of desk use, and the VDT type (color vs. monochrome). These findings indicate that VDT exposures within office settings are complex and cannot be easily predicted by surrogates. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号