首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2503篇
  免费   213篇
  国内免费   125篇
  2841篇
  2024年   21篇
  2023年   91篇
  2022年   68篇
  2021年   117篇
  2020年   97篇
  2019年   101篇
  2018年   90篇
  2017年   99篇
  2016年   89篇
  2015年   96篇
  2014年   140篇
  2013年   179篇
  2012年   103篇
  2011年   110篇
  2010年   88篇
  2009年   84篇
  2008年   110篇
  2007年   91篇
  2006年   66篇
  2005年   69篇
  2004年   85篇
  2003年   92篇
  2002年   82篇
  2001年   65篇
  2000年   49篇
  1999年   44篇
  1998年   44篇
  1997年   42篇
  1996年   50篇
  1995年   34篇
  1994年   41篇
  1993年   53篇
  1992年   29篇
  1991年   26篇
  1990年   24篇
  1989年   18篇
  1988年   20篇
  1987年   19篇
  1986年   14篇
  1985年   23篇
  1984年   13篇
  1983年   7篇
  1982年   13篇
  1981年   14篇
  1980年   13篇
  1978年   4篇
  1977年   5篇
  1974年   2篇
  1973年   3篇
  1967年   2篇
排序方式: 共有2841条查询结果,搜索用时 0 毫秒
91.
Salicylic acid has a role in regulating gene expression during leaf senescence   总被引:19,自引:0,他引:19  
Leaf senescence is a complex process that is controlled by multiple developmental and environmental signals and is manifested by induced expression of a large number of different genes. In this paper we describe experiments that show, for the first time, that the salicylic acid (SA)-signalling pathway has a role in the control of gene expression during developmental senescence. Arabidopsis plants defective in the SA-signalling pathway (npr1 and pad4 mutants and NahG transgenic plants) were used to investigate senescence-enhanced gene expression, and a number of genes showed altered expression patterns. Senescence-induced expression of the cysteine protease gene SAG12, for example, was conditional on the presence of SA, together with another unidentified senescence-specific factor. Changes in gene expression patterns were accompanied by a delayed yellowing and reduced necrosis in the mutant plants defective in SA-signalling, suggesting a role for SA in the cell death that occurs at the final stage of senescence. We propose the presence of a minimum of three senescence-enhanced signalling factors in senescing leaves, one of which is SA. We also suggest that a combination of signalling factors is required for the optimum expression of many genes during senescence.  相似文献   
92.
93.
In response to DNA damage, a cell can be forced to permanently exit the cell cycle and become senescent. Senescence provides an early barrier against tumor development by preventing proliferation of cells with damaged DNA. By studying single cells, we show that Cdk activity persists after DNA damage until terminal cell cycle exit. This low level of Cdk activity not only allows cell cycle progression, but also promotes cell cycle exit at a decision point in G2 phase. We find that residual Cdk1/2 activity is required for efficient p21 production, allowing for nuclear sequestration of Cyclin B1, subsequent APC/CCdh1‐dependent degradation of mitotic inducers and induction of senescence. We suggest that the same activity that triggers mitosis in an unperturbed cell cycle enforces senescence in the presence of DNA damage, ensuring a robust response when most needed.  相似文献   
94.
The effects of a novel preservative for cut carnation flowers, 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS), were investigated. DPSS extended the vase life of cut carnation flowers not only by continuous treatment but pulse treatment as well. This inhibition of senescence by DPSS appeared to depend on that of ethylene production in carnation flowers. DPSS provided no protection from the action of ethylene nor did it inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) synthase. It did inhibit ACC-dependent ethylene production in carnation petal discs, suggesting possible potential for inhibiting ACC oxidase.  相似文献   
95.
A full-length cDNA clone encoding microbody NAD+-dependent malate dehydrogenase (MDH) of cucumber has been isolated. The deduced amino acid sequence is 97% identical to glyoxysomal MDH (gMDH) of watermelon, including the amino terminal putative transit peptide. The cucumber genome contains only a single copy of this gene. Expression of this mdh gene increases dramatically in cotyledons during the few days immediately following seed imbibition, in parallel with genes encoding isocitrate lyase (ICL) and malate synthase (MS), two glyoxylate cycle enzymes. The level of MDH, ICL and MS mRNAs then declines, but then MDH mRNA increases again together with that of peroxisomal NAD+-dependent hydroxypyruvate reductase (HPR). The mdh gene is also expressed during cotyledon senescence, together with hpr, icl and ms genes. These results indicate that a single gene encodes MDH which functions in both glyoxysomes and peroxisomes. In contrast to icl and ms genes, expression of the mdh gene is not activated by incubating detached green cotyledons in the dark, nor is it affected by exogenous sucrose in the incubation medium. The function of this microbody MDH and the regulation of its synthesis are discussed.  相似文献   
96.
《Molecular cell》2021,81(18):3848-3865.e19
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   
97.
Plant senescence plays diverse important roles in development and environmental responses.However,the molecular basis of plant senescence is remained largely unknown.A rice spontaneous mutant with the character of early senescence and male sterility (sms) was found in the breeding line NT10-748.In order to identify the gene SMS1 and the underlying mechanism,we preliminarily analyzed physiological and biochemical phenotypes of the mutant.The mutant contained lower chlorophyll content compared with the wild type control and was severe male sterile with lower pollen viability.Genetic analysis showed that the mutant was controlled by a single recessive gene.By the map-based cloning approach,we fine-mapped SMS1 to a 67 kb region between the markers Z3-4 and Z1-1 on chromosome 8 using 1,074 F2 recessive plants derived from the cross between the mutant sms1 (japonica) × Zhenshan 97 (indica),where no known gene involved in senescence or male sterility has been identified.Therefore the SMS1 gene will be a novel gene that regulates the two developmental processes.The further cloning and functional analysis of the SMS1 gene is under way.  相似文献   
98.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   
99.
Cellular architectural proteins often participate in organ development and maintenance. Although functional decay of some of these proteins during aging is known, the cell‐type‐specific developmental role and the cause and consequence of their subsequent decay remain to be established especially in mammals. By studying lamins, the nuclear structural proteins, we demonstrate that lamin‐B1 functions specifically in the thymic epithelial cells (TECs) for proper thymus organogenesis. An up‐regulation of proinflammatory cytokines in the intra‐thymic myeloid immune cells during aging accompanies a gradual reduction of lamin‐B1 in adult TECs. We show that these cytokines can cause senescence and lamin‐B1 reduction of the young adult TECs. Lamin‐B1 supports the expression of TEC genes that can help maintain the adult TEC subtypes we identified by single‐cell RNA‐sequencing, thymic architecture, and function. Thus, structural proteins involved in organ building and maintenance can undergo inflammation‐driven decay which can in turn contribute to age‐associated organ degeneration.  相似文献   
100.
The myogenic behaviour of primary human muscle precursor cells (MPCs) obtained from young (aged 20–25 years) and elderly people (aged 67–82 years) was studied in culture. Cells were compared in terms of proliferation, DNA damage, time course and extent of myogenic marker expression during differentiation, fusion, size of the formed myotubes, secretion of the myogenic regulatory cytokine TGF‐β1 and sensitivity to TGF‐β1 treatment. No differences were observed between cells obtained from the young and elderly people. The cell populations were expanded in culture until replicative senescence. Cultures that maintained their initial proportion of myogenic cells (desmin positive) with passaging (n = 5) were studied and compared with cells from the same individuals in the non‐senescent state. The senescent cells exhibited a greater number of cells with DNA damage (γ‐H2AX positive), showed impaired expression of markers of differentiation, fused less well, formed smaller myotubes and secreted more TGF‐β. The data strongly suggest that MPCs from young and elderly people have similar myogenic behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号