首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3369篇
  免费   318篇
  国内免费   137篇
  3824篇
  2024年   15篇
  2023年   102篇
  2022年   122篇
  2021年   228篇
  2020年   257篇
  2019年   302篇
  2018年   297篇
  2017年   274篇
  2016年   272篇
  2015年   295篇
  2014年   337篇
  2013年   746篇
  2012年   230篇
  2011年   142篇
  2010年   59篇
  2009年   44篇
  2008年   25篇
  2007年   10篇
  2006年   10篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有3824条查询结果,搜索用时 22 毫秒
921.
《Autophagy》2013,9(5):835-845
Turnover of damaged, dysfunctional, or excess organelles is critical to cellular homeostasis. We screened mutants disturbed in peroxisomal protein import, and found that a deficiency in the exportomer subunits Pex1, Pex6, and Pex15 results in enhanced turnover of peroxisomal membrane structures compared with other mutants. Strikingly, almost all peroxisomal membranes were associated with phagophore assembly sites in pex1Δ atg1Δ cells. Degradation depended on Atg11 and the pexophagy receptor Atg36, which mediates degradation of superfluous peroxisomes. Mutants of PEX1, PEX6, and PEX15 accumulate ubiquitinated receptors at the peroxisomal membrane. This accumulation has been suggested to trigger pexophagy in mammalian cells. We show by genetic analysis that preventing this accumulation does not abolish pexophagy in Saccharomyces cerevisiae. We find Atg36 is modified in pex1Δ cells even when Atg11 binding is prevented, suggesting Atg36 modification is an early event in the degradation of dysfunctional peroxisomal structures in pex1Δ cells via pexophagy.  相似文献   
922.
《Autophagy》2013,9(4):615-616
Combining two different treatment modalities for targeting malignancies is gaining importance, with preclinical/clinical results indicating higher success rates in eradicating tumors or having longer remission periods. A better understanding of the synergy between the treatments helps in optimizing the dose and time of administration. We found that chemotherapy enhanced the levels of insulin-like growth factor 2 receptor/cation-independent mannose-6-phosphate receptor (IGF2R) on the surface of tumor cells, which leads to better tumor targeting by cytotoxic T cells (CTLs). Early evidence indicates that upregulation of IGF2R involves the autophagy pathway.  相似文献   
923.
Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli.  相似文献   
924.
Obatoclax (GX15-070), a small-molecule inhibitor of antiapoptotic Bcl-2 proteins, has been reported to trigger cell death via autophagy. However, the underlying molecular mechanisms have remained elusive. Here, we identify GX15-070-stimulated assembly of the necrosome on autophagosomal membranes as a key event that connects GX15-070-stimulated autophagy to necroptosis. GX15-070 predominately induces a non-apoptotic form of cell death in rhabdomyosarcoma cells, as evident by lack of typical apoptotic features such as DNA fragmentation or caspase activation and by insensitivity to the broad-range caspase inhibitor zVAD.fmk. Instead, GX15-070 triggers massive accumulation of autophagosomes, which are required for GX15-070-induced cell death, as blockade of autophagosome formation by silencing of Atg5 or Atg7 abolishes GX15-070-mediated cell death. Co-immunoprecipitation studies reveal that GX15-070 stimulates the interaction of Atg5, a constituent of autophagosomal membranes, with components of the necrosome such as FADD, RIP1 and RIP3. This GX15-070-induced assembly of the necrosome on autophagosomes occurs in a Atg5-dependent manner, as knockdown of Atg5 abrogates formation of this complex. RIP1 is necessary for GX15-070-induced cell death, as both genetic and pharmacological inhibition of RIP1 by shRNA-mediated knockdown or by the RIP1 inhibitor necrostatin-1 blocks GX15-070-induced cell death. Similarly, RIP3 knockdown rescues GX15-070-mediated cell death and suppression of clonogenic survival. Interestingly, RIP1 or RIP3 silencing has no effect on GX15-070-stimulated autophagosome formation, underlining that RIP1 and RIP3 mediate cell death downstream of autophagy induction. Of note, GX15-070 significantly suppresses tumor growth in a RIP1-dependent manner in the chorioallantoic membrane model in vivo. In conclusion, GX15-070 triggers necroptosis by promoting the assembly of the necrosome on autophagosomes. These findings provide novel insights into the molecular mechanisms of GX15-070-induced non-apoptotic cell death.  相似文献   
925.
Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.  相似文献   
926.
《Autophagy》2013,9(4):696-698
Sirolimus (rapamycin), an inhibitor of the mechanistic target of rapamycin (MTOR), was originally proposed as an immunosuppressant to prevent rejection of solid organ transplants. There were expectations that MTOR inhibitors would replace nephrotoxic calcineurin inhibitors (CNIs). Despite its potential advantages, evidence that sirolimus causes de novo or worsening proteinuria is unequivocal. Given the well-recognized proteinuric effect of MTOR inhibitors, we were interested in understanding its role in maintaining the glomerular filtration barrier. To investigate this in vivo, we developed a mouse model with a podocyte selective deletion of the Mtor gene (Mtor pod-KO).  相似文献   
927.
《Autophagy》2013,9(4):692-693
Alterations in autophagy are thought to underlie various neurodegenerative diseases including Parkinson disease (PD). Previous studies have indicated that the PD gene leucine rich repeat kinase 2 (LRRK2) is involved in this process, but its mechanism of action has remained unknown. Our recent work describes how LRRK2 acts through calcium-mediated events originating from acidic stores to regulate autophagy and cell survival, which may give rise to novel therapeutic strategies.  相似文献   
928.
929.
《Autophagy》2013,9(12):2346-2361
The standard of care for unresectable lung cancer is chemoradiation. However, therapeutic options are limited and patients are rarely cured. We have previously shown that vitamin D and vitamin D analogs such as EB 1089 can enhance the response to radiation in breast cancer through the promotion of a cytotoxic form of autophagy. In A549 and H460 non-small cell lung cancer (NSCLC) cells, 1,25-D3 (the hormonally active form of vitamin D) and EB 1089 prolonged the growth arrest induced by radiation alone and suppressed proliferative recovery, which translated to a significant reduction in clonogenic survival. In H838 or H358 NSCLC cells, which lack VDR/vitamin D receptor or functional TP53, respectively, 1,25-D3 failed to modify the extent of radiation-induced growth arrest or suppress proliferative recovery post-irradiation. Sensitization to radiation in H1299 NSCLC cells was evident only when TP53 was induced in otherwise tp53-null H1299 NSCLC cells. Sensitization was not associated with increased DNA damage, decreased DNA repair or an increase in apoptosis, necrosis, or senescence. Instead sensitization appeared to be a consequence of the conversion of the cytoprotective autophagy induced by radiation alone to a novel cytostatic form of autophagy by the combination of 1,25-D3 or EB 1089 with radiation. While both pharmacological and genetic suppression of autophagy or inhibition of AMPK phosphorylation sensitized the NSCLC cells to radiation alone, inhibition of the cytostatic autophagy induced by the combination treatment reversed sensitization. Evidence for selectivity was provided by lack of radiosensitization in normal human bronchial cells and cardiomyocytes. Taken together, these studies have identified a unique cytostatic function of autophagy that appears to be mediated by VDR, TP53, and possibly AMPK in the promotion of an enhanced response to radiation by 1,25-D3 and EB 1089 in NSCLC.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号