首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20795篇
  免费   353篇
  国内免费   366篇
  2023年   63篇
  2022年   69篇
  2021年   122篇
  2020年   123篇
  2019年   1883篇
  2018年   1604篇
  2017年   392篇
  2016年   138篇
  2015年   124篇
  2014年   294篇
  2013年   308篇
  2012年   220篇
  2011年   241篇
  2010年   164篇
  2009年   178篇
  2008年   237篇
  2007年   232篇
  2006年   199篇
  2005年   212篇
  2004年   179篇
  2003年   159篇
  2002年   131篇
  2001年   116篇
  2000年   102篇
  1999年   119篇
  1998年   101篇
  1997年   69篇
  1996年   56篇
  1995年   47篇
  1994年   67篇
  1993年   53篇
  1992年   32篇
  1991年   37篇
  1990年   43篇
  1989年   34篇
  1988年   33篇
  1987年   30篇
  1985年   858篇
  1984年   1965篇
  1983年   1546篇
  1982年   1571篇
  1981年   1255篇
  1980年   1158篇
  1979年   1068篇
  1978年   946篇
  1977年   790篇
  1976年   639篇
  1975年   591篇
  1974年   490篇
  1973年   376篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
981.
Hemoglobins (Hbs) Austin and Waco were detected by their electrophoretic migration on cellulose acetate (pH 8.4) and citrate agar (pH 6.2). By these methods, both variants migrated between Hbs A and F. Globin chain analysis at pH 8.6 indicated that the mutant β chain of Hb Austin was faster moving than the βA chain; however, the mutant chain of Hb Waco was indistinguishable from the βA chain by this technique. The two variants were isolated by ion-exchange column chromatography. Sequence studies demonstrated a substitution of serine (Hb Austin) and lysine (Hb Waco) for arginine at position 40 in the β chain. These mutations involve an amino acid residue in the α1β2 contact region, which, before this report, had been considered invariant in all hemoglobin sequences. Hb Austin was found to exist as dimers when oxygenated and as tetramers when deoxygenated. The equilibrium constant (Kd) for the tetramer to dimer transition was approximately 300 × 10?6m, as calculated from sedimentation velocity studies. This variant also had high oxygen affinity, a much reduced heme-heme interaction, and a normal Bohr effect. The functional properties of Hb Waco were similar to those of Hb A.  相似文献   
982.
Multiple protein kinase activities were found in the luminal segment of the renal proximal tubule cell plasma membrane (brush border membrane). Membranes were extracted with Lubrol, with no loss in activity, and the extract was chromatographed on diethylaminoethyl cellulose with a salt gradient. With protamine as substrate, activity eluted in two peaks, designated I and IIb, and was cyclic AMP independent. With histone VII-S, one peak, designated IIa, appeared, which eluted slightly ahead of IIb and was cyclic AMP dependent. The three activities eluted in their original patterns following rechromatography. Histone kinase activity in the combined IIa+b fraction was stimulated threefold by cyclic nucleotides (Ka = 0.013 and 0.94 μM for cyclic AMP and cyclic GMP, respectively) by increasing V. Cyclic AMP binding activity eluted with histone kinase activity. Rechromatography of IIa+b on diethylaminoethyl cellulose containing 1 μm cyclic AMP resulted in passage through the column of most of the histone kinase activity (IIa) prior to the salt gradient, but retention of kinase IIb, which again eluted in its original position. Characterization of the separated enzymes revealed that kinase I was highly specific for protamine and totally insensitive to cyclic AMP and a specific protein inhibitor of cyclic AMP-dependent kinases. Kinase IIa was relatively specific for histones and was completely inhibited by the protein inhibitor. Kinase IIb was nonspecific, catalyzing phosphorylation of protamine, casein, histones, and phosvitin in decreasing order of activity, and was insensitive to cyclic AMP and the protein inhibitor. Exposure of intact brush border membranes to elevated temperatures revealed that phosphorylation of intrinsic membrane proteins and protamine was thermolabile, whereas cyclic AMP-dependent histone kinase activity was relatively thermostable. These findings implicate cyclic AMP-independent protamine kinases in the cyclic AMP-independent autophosphorylation of the brush border membrane.  相似文献   
983.
The effect of oleate, palmitate, and octanoate on glucose formation was studied with lactate or pyruvate as substrate. Octanoate was much more quickly oxidized and utilized for ketone body production than were oleate and palmitate. Among fatty acids studied, only octanoate resulted in a marked increase of the 3-hydroxybutyrate/acetoacetate (3-OHBAcAc) ratio. Each of the fatty acids studied stimulated glucose synthesis from pyruvate. The enhancement of gluconeogenesis by long-chain fatty acids was abolished after the addition of ammonia. As concluded from the “crossover” plot, the stimulatory effect of fatty acids was due to: (i) a stimulation of pyruvate carboxylation, (ii) a provision of reducing equivalents for glyceraldehyde phosphate dehydrogenase, and (iii) an acceleration of flux through hexose diphosphatase. Moreover, palmitate and oleate resulted in an increased generation of mitochondrial phosphpenolpyruvate, while in the presence of octanoate, the activity of mitochondrial phosphoenolpyruvate carboxykinase was diminished. When lactate was used as the glucose precursor, palmitate and oleate increased glucose production by about 50% but did not affect the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis. In contrast, in spite of the stimulation of both pyruvate carboxylase and hexose diphosphatase, as judged from the crossover plot, the addition of octanoate resulted in a marked inhibition of both glucose formation and mitochondrial generation of phosphoenolpyruvate. The inhibitory effect of octanoate was reversed by ammonia. Results indicate that fatty acids and ammonia are potent regulatory factors of both the rate of glucose formation and the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis in hepatocytes of the fasted rabbit.  相似文献   
984.
In the native folded conformation of a globular protein, amino acid residues distant along the polypeptide chain come together to form the compact structure. This spatial structure is such that most of the polar residues are on the surface and have contact with the solvent medium and the nonpolar residues buried in the interior which have contact with similar nonpolar side chains. This cooperativity and mutual interaction among the randomly aligned amino acid residues suggest that each type of residue may prefer to have a specific environment. To gain more insight into this aspect of residue-residue cooperativity, a detailed analysis of the preferred environment associated with each of the 20 different amino acid residues in a number of protein crystals has been carried out. The variation of nonpolar nature computed for different sizes of spheres shows that the spatial region between radii of 6 and 8 Å is more favored for hydrophobic interactions and indicates that the influence of each residue over the surrounding medium extends predominantly up to a distance of 8 Å. The analysis of the surrounding amino acid residues associated with each type of residue shows that there is a definite tendency for each type of residue to have association with specific residues. The variation in environment is found even within the polar group as well as in the nonpolar group of residues. The surrounding residues associated with isoleucine, leucine, and valine are purely nonpolar. Proline, a nonpolar residue, is often surrounded by polar residues. The surrounding nonpolar nature of the tryptophan and tyrosine residues implies that even a single polar atom in a nonpolar side chain is sufficient to reduce their hydrophobic environment. There exists a high degree of mutual residue-residue cooperativity between the pairs glutamic acid-lysine, methionine-arginine, asparagine-tryptophan, and glutamine-proline, and the mutual residue-residue noncooperativity is high for the pairs methionine-aspartic acid, cysteine-glutamic acid, histidine-glutamine, and leucine-asparagine. The formation of secondary and tertiary structures is discussed in terms of the preferred environment and mutual cooperativity among various types of amino acid residues.  相似文献   
985.
Dihydrofolate reductase from amethopterin-resistant Lactobacillus casei contains three tryptophan residues and the amino acid sequence surrounding each tryptophan has been determined. Oxidation of one of these residues by N-bromosuccinimide at pH 6.5 can be correlated with the complete loss of enzymatic activity. Following denaturation in urea, the oxidized enzyme was alkylated with dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide. Based on amino acid analyses and absorbance measurements at 410 nm, 2.2 mol of hydroxynitrobenzyl groups was incorporated per mol of protein. Presumably, hydroxynitrobenzyl adducts are formed with the two nonessential tryptophans. From the amino acid compositions of the two major thermolytic peptides containing the hydroxynitrobenzyl label and the partial sequences of two cyanogen bromide peptides containing the tryptophans, it was deduced that tryptophan-5 and tryptophan-129 were modified and, therefore, by difference, tryptophan-21 is the functional residue which becomes oxidized. The amino acid sequence surrounding tryptophan-21 is -Leu-
-Trp-His-Leu-Pro-. In reductases from four other species, this region of the sequence is highly homologous; such a conservation in this vicinity of the primary structure may indicate a functional involvement. The proline residues at positions 20 and 24 may serve to position tryptophan-21 into the appropriate configuration for optimum substrate-binding interactions.  相似文献   
986.
The dependence of the water proton magnetic resonance spin-lattice relaxation rate (T1??1) in the rotating frame on the strength of the spin-locking (H1) field has been investigated for packed oxy and deoxy normal and sickle erythrocytes at temperatures from 9 to 40 °C. The T1??1 of oxy or deoxy normal erythrocytes shows no dependence on H1 up to ~7 G at any temperature studied. On the other hand, T1??1 decreases from about 40 s?1 to 15 s?1 (H1 from 0 to ~7 G) for deoxygenated packed sickle cells at 40 °C. The magnitude of this variation of T1??1 with H1 decreases with decreasing temperature. Oxy packed sickle cells also show a dependence of T1??1 on H1 but the magnitude is <10% of that of the deoxygenated samples. These results suggest that water proton T1??1 measurements are a sensitive probe of hemoglobin S polymerization and provide a novel technique for the study of slow water motions in these systems. The T1??1 results are compared with low frequency T1?1 results of other investigators on hemoglobin S solutions. Analysis of the data suggests that water proton motions with correlation times of the order of 10?5 s are present in the deoxygenated sickle cell samples at temperatures above 10 °C.  相似文献   
987.
The effect of certain lipids on adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] from fibroblasts in culture has been investigated. The unsaturated fatty acids, as well as lysolecithin, were found to act as potent inhibitors of fibroblast adenylate cyclase activity. Increasing the degree of unsaturation increases the extent of inhibition noted at a given fatty acid concentration. The inhibitory effect of the unsaturated fatty acids or lysolecithin is not selective for a specific function of the adenylate cyclase system since basal, and hormone- or fluoride-stimulated cyclase activities are inhibited to the same extent. The fatty acid-inactivated state of fibroblast adenylate cyclase is not readily reversed for enzyme activity is not restored when arachidonate-treated membranes are washed with Tris buffer containing 10 mm EDTA, 0.15 mm albumin, or 0.15 m KCl. Previous studies have shown that the adenylate cyclase system from Moloney sarcoma virus-transformed NRK (MNRK) cells is not stimulated by the addition of GTP or hormones. Of interest is the present finding that the addition of unsaturated fatty acids, or lysolecithin, over a narrow concentration range (0.1 – 0.2 mm) leads to partial restoration of GTP activation of MNRK cyclase activity. Hormonal responsiveness to l-epinephrine or prostaglandin E1 is not restored to the MNRK enzyme with fatty acid or lysolecithin treatment.  相似文献   
988.
The regulation of the nature and quantity of the fatty acids produced in vivo by Acholeplasma laidlawii B in the presence of various exogenous fatty acids has been investigated. In the presence of exogenous medium- or long-chain fatty acids, the organism appears to reduce the amounts of de novo biosynthesized fatty acids in its cellular lipid pool by two distinct mechanisms: an excretion of biosynthesized fatty acids to the growth medium as free fatty acids, and a reduction in total de novo biosynthetic output. These two mechanisms do not suffice to maintain constant total membrane lipid levels, but they do appear to significantly moderate the effect of exogenous fatty acids on the level of membrane lipid. In the presence of short-chain fatty acids, total membrane lipid levels are not elevated. Exogenous fatty acids can cause shifts in the average chain length of de novo biosynthesized fatty acids; the magnitudes and directions of these shifts can be correlated with the specificity of the exogenous species for esterification to the 1- or the 2-position of the glycerol moiety of membrane glycerolipids. As the various endogenously synthesized fatty acids differ in their positional specificity for glycerolipid esterification, we propose that the competition of an exogenous species with significant specificity for a particular position with the endogenously derived fatty acids specific for that position can selectively depress the synthesis of such endogenously derived species, thereby altering the overall product spectrum of de novo fatty acid biosynthesis in vivo.  相似文献   
989.
The results presented here indicate that mitochondrial DNA (mtDNA) synthesis occurs on the inner mitochondrial membrane and that a membrane-DNA complex, enriched in newly synthesized DNA, can be isolated. The complex is able to synthesize DNA in vitro. Enrichment studies demonstrated that mtDNA synthesis occurs on an intact membrane-DNA complex in vitro and that pulse-labeled mtDNA could be chased from the membrane-DNA complex to the top fraction of the discontinuous sucrose gradient. The membrane-DNA complex was also shown to carry out replicative synthesis of mtDNA in vitro. Replication was shown to be asynchronous with heavy-strand synthesis preceding light-strand synthesis. The progression of mtDNA replication by the membrane-DNA complex was shown to be from small fragments (<13 S) to larger fragments (14–24 S) liberated from closed circular molecules, to a heat-stable 27 S molecule, and finally to a 38 S heat-stable molecule. The time estimated to progress from small fragments to the 38 S molecule is 120 min.  相似文献   
990.
A respiratory-competent wild-type strain and a nuclear isogenic, mitochondrial DNA-less, petite mutant strain of Saccharomyces cerevisiae were grown under conditions of catabolite repression in batch cultures and under conditions of catabolite derepression in chemostat cultures. Subcellular fractions were isolated and the capacity of these fractions to incorporate sn-[2-3H]glycerol 3-phosphate into phospholipids was studied. Neither catabolite repression nor loss of mitochondrial DNA appreciably altered the total in vitro lipid synthesized by mitochondrial fractions during the incubation. Mitochondria isolated from catabolite-derepressed wild-type and petite cells had approximately the same specific activity in vitro for the synthesis of phosphatidylinositol. phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, and neutral lipids. Mitochondria isolated from the petite cells retained the capacity to synthesize phosphatidylglycerol and diphosphatidylglycerol, although the synthesis of these phospholipids was far less extensive than that by the mitochondria isolated from the wild-type cells. In both cases, mitochondria prepared from catabolite-repressed cells synthesized a greater proportion of phosphatidylserine than did mitochondria from catabolite-derepressed cells. The proportions of phospholipid species synthesized in vitro by the microsomal fractions studied were not grossly affected by catabolite repression or loss of mitochondrial DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号