首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   74篇
  国内免费   150篇
  2024年   2篇
  2023年   8篇
  2022年   36篇
  2021年   42篇
  2020年   47篇
  2019年   48篇
  2018年   35篇
  2017年   26篇
  2016年   28篇
  2015年   37篇
  2014年   35篇
  2013年   59篇
  2012年   55篇
  2011年   81篇
  2010年   69篇
  2009年   97篇
  2008年   75篇
  2007年   96篇
  2006年   65篇
  2005年   53篇
  2004年   52篇
  2003年   76篇
  2002年   29篇
  2001年   31篇
  2000年   42篇
  1999年   32篇
  1998年   41篇
  1997年   33篇
  1996年   29篇
  1995年   26篇
  1994年   28篇
  1993年   28篇
  1992年   22篇
  1991年   15篇
  1990年   7篇
  1989年   22篇
  1988年   11篇
  1987年   11篇
  1986年   12篇
  1985年   6篇
  1984年   8篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有1570条查询结果,搜索用时 15 毫秒
31.
Four naturally occurring compounds, indole-3-carbinol (I3C), apigenin (Api), ellagic acid (EA) and tannic acid (TA), were tested for their inhibitory effects against 1-nitropyrene- (1-NP) or 1,6-dinitropyrene (1,6-DNP)-induced genotoxicity in Salmonella tester strains and Chinese hamster ovary (CHO) cells. Api and TA strongly inhibited the bacterial mutagenesis induced by nitropyrenes, while 13C and EA had little or no effect. For example, in TA98, 0.2 μmole Api resulted in 48% and 56% inhibition of the mutagenicity induced by 4 nmole 1-NP and 0.035 nmole 1,6-DNP, respectively. With an equal dose, expected, a good correlation was observed between the antimutagenicity of nitropyrenes and their inhibitory effect on nitroreductase activity. This indicated that one of the possible antimutagenic mechanisms of Api or TA was to inactivate the metabolism of nitropyrenes. Two biological end-points, cytotoxicity and sister-chromatid exchange (SCEs), were used to screen the antigenotoxic effects of these compounds in CHO cells. At the sub-cytotoxic dose, 13C, Api and TA all protected against the cytotoxicity induced by 1-NP and 1,6-DNP, but only TA and Api gave a significant reduction of the frequency of SCEs. Moreover, this reduction was found to be highly dose-dependent.  相似文献   
32.
Hydrophobic and charge-charge interactions of Salmonella typhimirium and Serratia marcescens were determined and related to their content of fimbriae and lipopolysaccharide (LPS). The cell surface structures were characterized with hydrophobic interaction chromatography (HIC), electrostatic interaction chromatography (ESIC) and particle electrophoresis measurements. The degree of interaction at the air-water interface was tested using a monolayered lipid film applied to an aqueous surface. The cell surface hydrophobicity of S. typhimurium in the presence of fimbriae was less in smooth than in rought bacteria. Examination of a series of rough mutants of S. typhimurium indicates that reduction of the O-side chain and core oligosaccharides was correlated with increased cell hydrophobicity. The enrichment factors at the air-water interface were significantly higher for fimbriated than for non-fimbriated S. typhimurium cells. Fimbriated S. marcescens cells were less hydrophobic and adhered to a lesser degree at the air-water surface than non-fimbriated counterparts. Electrophoretic measurements and adsorption to ion exchangers gives different information about the surface charge of bacteria. The latter technique gives the interaction between localized charged surfaces.Abbreviations HIC hydrophobic interaction chromatography - ESIC electrostatic interaction chromatography - LPS lipopolysaccharide - PBS phosphate buffered saline solution  相似文献   
33.
In view of the development of al-carnitine deficiency, the metabolism ofl-carnitine and structure-related trimethylammonium compounds was studied inSalmonella typhimurium LT2 by means of thin-layer chromatography (TLC).l-Carnitine, crotonobetaine and acetyl-l-carnitine stimulated the anaerobic growth in a complex medium significantly. The stimulation depended on the formation of -butyrobetaine. The reduction ofl-carnitine proceeded in two steps: (1) Dehydration of thel-carnitine to crotonobetaine, (2) hydrogenation of crotonobetaine to -butyrobetaine. The reduction of crotonobetaine was responsible for the growth stimulation. Terminal electron acceptors of the anaerobic respiration such as nitrate and trimethylamine N-oxide, but not fumarate, suppressed the catabolism ofl-carnitine completely. Glucose fermentation, too, inhibited the reduction ofl-carnitine but optimal growth with a high carnitine catabolism was achieved byd-ribose. The esters of carnitine with medium- and long-chain fatty acids inhibited the growth considerably because of their detergent properties.Abbreviations TLC thin-layer chromatography  相似文献   
34.
Published research on process-based models for biocontrol of foodborne pathogens on produce is limited. The aim of this research was to develop cost model estimates for competitive exclusion (CE) process using Pseudomonas fluorescens and Pseudomonas chlororaphis (non-plant pathogenic and non-human pathogen) as biocontrol against Salmonella enterica on tomatoes. Cost estimates were based on material inputs, equipment, facilities, and projected processing conditions of post-harvest packaging of tomatoes. The microbiological data for inactivation of S. enterica was based on published papers. The small-scale processing facility was assumed to have a processing capacity of 2000 kg of tomatoes/hour for 16 h per day, operational 6 days a week, and for 3-months /year. The large-scale facility was assumed to have a processing capacity of 100,000 kg of tomatoes/hour. Estimated initial capital investment costs for small and large-scale models (production facility) were US$391,000 and US$2.1 million. Application of CE for biocontrol of S. enterica on tomatoes was estimated at US$0.0058–0.073/kg of tomatoes during commercial processing operations. This exceeds chlorine wash technology estimated at US$0.00046/kg and is competitive with gaseous chlorine dioxide at US$0.02–0.21/kg. For high-value produce, CE may complement existing technologies increase food safety, reduce storage loses, and extend shelf life of produce.  相似文献   
35.
Phage therapy is considered an alternative modality in the treatment of different bacterial diseases. However, their therapeutic and preventive roles against infections caused by Salmonella Kentucky and Escherichia coli O119 were of little attention. In this study, two phages were isolated, characterized and assessed for their potential therapeutic and preventive roles against S. Kentucky and E. coli O119 infections in broilers. Commercial 1-day-old arboacres broiler chicks were assigned to seven groups: Group Ӏ was as a negative control, groups (П and Ш) were assigned as positive controls by the challenge of S. Kentucky and E. coli O119, respectively. The remaining four groups (IV, V, VI and VII) were administrated with five repeated phage doses to determine the effect of multiple doses. Phages were administrated in groups (IV and VI) after challenging with S. Kentucky and E. coli O119, respectively to assess their therapeutic role; moreover, their preventive role was evaluated through administration in groups (V and VII) before challenging with S. Kentucky and E. coli O119, respectively. Sampling was done from different organs at three time points and revealed that phage-treated groups had lower colony forming units of S. Kentucky and E. coli. Our results suggest that bacteriophages are efficient in the treatment and prevention of salmonellosis and colibacillosis in broiler farms.  相似文献   
36.
37.
Use of bacteria in cancer therapy, despite being considered as a potent strategy, has not really picked up the way other methods of cancer therapies have evolved. However, in recent years, the interest on use of bacteria to kill cancer cells has renewed considerably. The standard and widely followed strategies of cancer treatment often fail either due to the complexity of tumour biology or because of the accompanying side effects. In contrast, these limitations can be easily overcome in a bacteria-mediated approach. Salmonella is a bacterium, which is known for its ability to colonize solid or semisolid tumours more efficiently than any other bacteria. Among more than 2500 serovars of Salmonella, S. Typhimurium has been widely studied for its antagonistic effects on cancer cells. Here in, we review the current status of the preclinical and the clinical studies with a focus on the mechanisms that attribute the anticancer properties to nontyphoidal Salmonella.  相似文献   
38.
To establish systemic infections, Salmonella enterica serovar Typhimurium (S. Typhimurium) requires Salmonella pathogenicity island 2 (SPI‐2) to survive and replicate within macrophages. High expression of many SPI‐2 genes during the entire intracellular growth period within macrophages is essential, as it contributes to the formation of Salmonella‐containing vacuole and bacterial replication. However, the regulatory mechanisms underlying the sustained induction of SPI‐2 within macrophages are not fully understood. Here, we revealed a time‐dependent regulation of SPI‐2 expression mediated by a novel regulator PagR (STM2345) in response to the low Mg2+ and low phosphate (Pi) signals, which ensured the high induction of SPI‐2 during the entire intramacrophage growth period. Deletion of pagR results in reduced bacterial replication in macrophages and attenuation of systemic virulence in mice. The effects of pagR on virulence are dependent on upregulating the expression of slyA, a regulator of SPI‐2. At the early (0–4 hr) and later (after 4 hr) stage post‐infection of macrophages, pagR is induced by the low Pi via PhoB/R two‐component systems and low Mg2+ via PhoP/Q systems, respectively. Collectively, our findings revealed that the PagR‐mediated regulatory mechanism contributes to the precise and sustained activation of SPI‐2 genes within macrophages, which is essential for S. Typhimurium systemic virulence.  相似文献   
39.
Abstract

Emerging evidence suggests that microbial pathogens may induce oxidative stress in infected hosts. The aim of the present study was to investigate the relationship between changes in oxidative stress and intestinal infection with and without antibiotic treatment in animal models. Sprague-Dawley (SD) rats were divided into three groups: rats infected with Salmonella enterica serovar Enteritidis (S. enteritidis), rats infected with S. enteritidis followed by norfloxacin treatment, and the control group. To evaluate oxidative stress changes, levels of 8-oxo-7,8-dihydroguanosine (8-oxo-Gsn) and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-dGsn), which represented oxidative damage to RNA and DNA, respectively, were analysed in urine and tissue samples. In urine, the level of 8-oxo-Gsn increased significantly after oral exposure to S. enteritidis (p?≤?0.001) and returned to baseline after recovery. Notably, norfloxacin treatment decreased the level of 8-oxo-Gsn in urine significantly (p?=?0.001). Changes of 8-oxo-Gsn measured in tissues from the small intestine, colon, liver and spleen were consistent with 8-oxo-Gsn measured in urine. Our study suggested that 8-oxo-Gsn in urine may serve as a highly sensitive biomarker for evaluating the severity of S. enteritidis infection and the effectiveness of antibiotic treatment against infection.  相似文献   
40.
《Autophagy》2013,9(12):1824-1826
Ubiquitinated aggregates are formed in eukaryotic cells in response to several external stimuli, including exposure to bacterial lipopolysaccharide (LPS). Although Salmonella enterica serovar Typhimurium (S. Typhimurium) LPS has been shown to induce aggresome-like induced structures (ALIS) in macrophages, these have not been described in S. Typhimurium-infected macrophages. Given that LPS is present in infection, this suggests that S. Typhimurium might suppress the formation of ALIS. We found that S. Typhimurium induces the formation of ubiquitinated aggregates in epithelial cells and macrophages, but that their presence is masked by the deubiquitinase (DUB) activity of the S. Typhimurium virulence protein, SseL. SseL deubiquitinates SQSTM1/p62-bound proteins found in S. Typhimurium-induced aggregates and ALIS, and reduces the recruitment of autophagic components. While the functions of ALIS and other ubiquitinated aggregates remain unclear, they serve to sequester cytosolic proteins under a variety of stress conditions and are suggested to be involved in host immune defense. During infection, the deubiquitinase activity of SseL reduces autophagic flux in infected cells and favors bacterial replication. This is a new example of how a bacterial pathogen counteracts the autophagy pathway through the action of a translocated virulence protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号