首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2715篇
  免费   212篇
  国内免费   156篇
  2024年   5篇
  2023年   30篇
  2022年   43篇
  2021年   43篇
  2020年   70篇
  2019年   134篇
  2018年   131篇
  2017年   87篇
  2016年   96篇
  2015年   94篇
  2014年   187篇
  2013年   247篇
  2012年   84篇
  2011年   123篇
  2010年   133篇
  2009年   200篇
  2008年   190篇
  2007年   161篇
  2006年   128篇
  2005年   125篇
  2004年   104篇
  2003年   101篇
  2002年   105篇
  2001年   38篇
  2000年   30篇
  1999年   47篇
  1998年   36篇
  1997年   38篇
  1996年   31篇
  1995年   25篇
  1994年   20篇
  1993年   23篇
  1992年   21篇
  1991年   15篇
  1990年   9篇
  1989年   12篇
  1988年   8篇
  1987年   19篇
  1986年   7篇
  1985年   9篇
  1984年   13篇
  1983年   9篇
  1982年   14篇
  1981年   8篇
  1980年   11篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1975年   1篇
  1973年   1篇
排序方式: 共有3083条查询结果,搜索用时 31 毫秒
81.
M. Alles 《Biofouling》2013,29(5):469-480
Fouling release (FR) coatings are increasingly applied as an environmentally benign alternative for controlling marine biofouling. As the technology relies on removing fouling by water currents created by the motion of ships, weakening of adhesion of adherent organisms is the key design goal for improved coatings. In this paper, a microfluidic shear force assay is used to quantify how easily diatoms can be removed from surfaces. The experimental setup and the optimization of the experimental parameters to study the adhesion of the diatom Navicula perminuta are described. As examples of how varying the physico-chemical surface properties affects the ability of diatoms to bind to surfaces, a range of hydrophilic and hydrophobic self-assembled monolayers was compared. While the number of cells that attached (adhered) was barely affected by the coatings, the critical shear stress required for their removal from the surface varied significantly.  相似文献   
82.
83.
We examined a new backbone torsion-energy term proposed by us in the force field for protein systems. This torsion-energy term is represented by a double Fourier series in two variables, namely the backbone dihedral angles φ and ψ. It gives a natural representation of the torsion energy in the Ramachandran space in the sense that any two-dimensional energy surface periodic in both φ and ψ can be expanded by the double Fourier series. We can then easily control secondary-structure-forming tendencies by modifying the torsion-energy surface. For instance, we can increase or decrease the α-helix-forming-tendencies by lowering or raising the torsion-energy surface in the α-helix region and likewise increase or decrease the β-sheet-forming tendencies by lowering or raising the surface in the β-sheet region in the Ramachandran space. We applied this torsion-energy modification method to six force fields, AMBER parm94, AMBER parm96, AMBER parm99, CHARMM27, OPLS-AA and OPLS-AA/L, and demonstrated that our modifications of the torsion-energy terms resulted in the expected changes of secondary-structure-forming tendencies by performing folding simulations of α-helical and β-hairpin peptides.  相似文献   
84.
Molecular dynamics simulations of the tetradecasaccharide XXXGXXXG in complex with the hybrid aspen xyloglucan endo-transglycosylase PttXET16-34 have been performed and analysed with respect to structure, dynamics, flexibility and ligand interactions. Notably, the charge state of the so-called ‘helper residue’ aspartate 87 (Asp87), which lies between the catalytic nucleophile [glutamate 85 (Glu85)] and general acid/base (Glu89) residues on the same beta strand, had a significant effect on PttXET16-34 active site structure. When Asp87 was deprotonated, electrostatic repulsion forced the nucleophile away from C1 of the sugar ring in subsite ? 1 and the proton–donating ability of Glu89 was also weakened due to the formation of a hydrogen bond with Asp87, whereas the protonation of Asp87 resulted in the formation of a hydrogen bond with the catalytic nucleophile and correct positioning of the catalytic machinery. The results suggest that catalysis in glycoside hydrolase family 16, and by extension clan GH-B enzymes, is optimal when the catalytic nucleophile is deprotonated for nucleophilic attack on the substrate, whereas the ‘helper residue’ and general acid/base residue are both in their conjugate acid forms to align the nucleophile and deliver a proton to the departing sugar, respectively.  相似文献   
85.
Based on an understanding of atomic layer deposition (ALD) from prior experimental and computational results, all-atom molecular dynamics (MD) simulations are used to model the Al2O3 film structure and composition during ALD processing. By separating the large time-scale surface reactions from the small time-scale structural relaxation, we have focused on the growth dynamics of amorphous Al2O3 films at the atomic scale. The simulations are able to reproduce some important properties and growth mechanisms of Al2O3 ALD films, and hence provide a bridge between atomic-level information and experimental measurements. Information about the evolution of the microscopic structures of the Al2O3 films is generated, and the influence of operation parameters on the Al2O3 ALD process. The simulations predict a strong influence of the initial surface composition and process temperature on the surface roughness, growth rate and growth mode of the deposited films.  相似文献   
86.
Cadherins, a large family of calcium-dependent adhesion molecules, are critical for intercellular adhesion. While crystallographic structures for several cadherins show clear structural similarities, their relevant adhesive strengths vary and their mechanisms of adhesion between types I and II cadherin subfamilies are still unclear. Here, stretching of cadherins was explored experimentally by atomic force microscopy and computationally by steered molecular dynamics (SMD) simulations, where partial unfolding of the E-cadherin ectodomains was observed. The SMD simulations on strand-swapping cadherin dimers displayed similarity in binding strength, suggesting contributions of other mechanisms to explain the strength differences of cell adhesion in vivo. Systematic simulations on the unfolding of the extracellular domains of type I and II cadherins revealed diverse pathways. However, at the earliest stage, a remarkable similarity in unfolding was observed for the various type I cadherins that was distinct from that for type II cadherins. This likely correlates positively with their distinct adhesive properties, suggesting that the initial forced deformation in type I cadherins may be involved in cadherin-mediated adhesion.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:25  相似文献   
87.
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.  相似文献   
88.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
89.
90.
CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (16×16) force curves in local areas (500×500 nm2) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号