首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   627篇
  免费   89篇
  国内免费   163篇
  879篇
  2024年   1篇
  2023年   15篇
  2022年   11篇
  2021年   28篇
  2020年   40篇
  2019年   29篇
  2018年   42篇
  2017年   32篇
  2016年   24篇
  2015年   38篇
  2014年   31篇
  2013年   43篇
  2012年   15篇
  2011年   40篇
  2010年   32篇
  2009年   38篇
  2008年   27篇
  2007年   26篇
  2006年   44篇
  2005年   38篇
  2004年   26篇
  2003年   29篇
  2002年   28篇
  2001年   31篇
  2000年   26篇
  1999年   12篇
  1998年   14篇
  1997年   11篇
  1996年   8篇
  1995年   13篇
  1994年   13篇
  1993年   12篇
  1992年   8篇
  1991年   12篇
  1990年   12篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1958年   2篇
排序方式: 共有879条查询结果,搜索用时 0 毫秒
91.
Reactive nitrogen (Nr) is removed by surface fluxes (air–surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air–surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1–4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent.  相似文献   
92.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   
93.
城市林地与非林地大气SO季节动态变化   总被引:4,自引:1,他引:4  
SO2作为主要的大气污染物之一,对人体与环境具有严重危害,导致酸雨后危害更大,尤其是长江以南省区污染严重。对长沙和株洲市区内2种类型区域———城市林地与城市非林地空气SO2浓度通过近1a(2004-01~2005-01)的同时进行对比定位观测,用甲醛吸收副玫瑰苯胺分光光度法分析,结果表明:从两市2种类型采样地空气SO2浓度水平总体与分别来看,SO2浓度年内变化均具有明显季节性波动特征(p=0·001),冬季最高,秋季最低;除冬季二者SO2浓度较为接近外,其他各季株洲非林地观测区SO2浓度均高于同季节长沙非林地观测区SO2浓度。空气SO2浓度季节性变化与当地的地理环境、气候条件、采暖期与工业生产布局等因素有较大的关系。其中,燃煤、降水、风速风向和气温是影响空气SO2浓度变化主要的污染源与气候条件因素。空气SO2浓度水平还与所在地有无林木覆盖关系密切。无林地空气SO2浓度年均值(0·18±0·08)mg/m3,有林地空气SO2浓度年均值(0·09±0·07)mg/m3,二者间存在极其显著差异(p=0·001)。林木生理活性季节性变化对植物调节空气SO2浓度季节变化的能力有一定的影响。按林地SO2浓度减缓效应大小排序,依次是夏季(55·4%)>冬季(54·1%)>秋季(49·3%)>春季(29·6%)。城市森林作为一种有效的生物措施在控制和治理城市大气SO2污染实践中具有重要作用,不失为一种经济可行、高效的环境保护措施,应着力提高城市森林覆盖率。  相似文献   
94.
Scientific evidence associates indoor environment pollutants with respiratory effects (asthma and allergies), and children constitute one of most sensitive groups. Indoor air quality (IAQ) in schools may indeed be a significant health factor for children, with effects on school attendance and performance. Our aim was to characterize IAQ of classrooms in Maia County (north of Portugal) for which there was no information available. The study was conducted in 21 of the 40 primary schools, selected by stratified random sampling. Depending on the dimension, one or two classrooms were tested at each school. Walkthrough surveys of school grounds, buildings, and individual classrooms were done. Continuous measurements were taken of temperature, relative humidity, airborne respirable particles, total volatile organic compounds, and carbon dioxide, whereas bioaerosols were counted on Plate Count Agar during regular school activities. The indoor arithmetic mean for PM10, CO2, TCOV, and bioaerosol concentrations were 0.14 mg/m3, 999 ppm, 0.41 mg/m3, and 4140 UCF/m3, respectively. The values of PM10 and CO2 were close to their acceptable maximum values, but bioaerosols were much higher. This study supports previous studies conducted in school environments and emphasizes the need for proactive indoor air quality audits in school buildings.  相似文献   
95.
The goal of this study is to prove that the light propagation in the head by used the 3‐D optical model from in vivo MRI data set can also provide significant characteristics on the spatial sensitivity of cerebral cortex folding geometry based on Monte Carlo simulation. Thus, we proposed a MRI based approach for 3‐D brain modeling of near‐infrared spectroscopy (NIRS). In the results, the spatial sensitivity profile of the cerebral cortex folding geometry and the arrangement of source‐detector separation have being necessarily considered for applications of functional NIRS. The optimal choice of source‐detector separation is suggested within 3–3.5 cm by the received intensity with different source‐detector separations and the ratio of received light from the gray and white matter layer is greater than 50%. Additionally, this study has demonstrated the capability of NIRS in not only assessing the functional but also detecting the structural change of the brain by taking advantage of the low scattering and absorption coefficients observed in CSF of sagittal view. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
96.
大气汞循环演化对全球汞的生物地球化学循环起着极其重要的作用。人为活动(化石燃料燃烧、水泥生产、氯碱制造以及金属冶炼与加工等)已成为大气汞的重要来源。在一定条件下,大气中的汞会发生干湿沉降而对某一局部环境——受体产生很大的影响。大气汞沉降在城市和工业区呈现出很强的空间梯度现象,排放源附近的汞沉降量明显较强。利用对受体的研究开展大气汞的源解析工作,是大气汞研究的一个重要领域。本文综述了污染物源解析的受体模型的研究及应用,介绍了化学质量平衡法、因子分析法、正交矩阵因子分解法、多元线性回归法等方法,概括了源解析在大气汞方面的应用成果,对我国区域大气汞源解析受体模型的建立及应用进行了探讨。  相似文献   
97.
The properties of an optical microscope are analyzed and analytically evaluated with a simple and effective model in order to understand the true meaning, limitations, and real capabilities of a defocusing technique. Major emphasis is given to the applications related to microscopic objects of biological interest using fluorescence and absorption light microscopy. A procedure for three-dimensional viewing is analyzed and discussed.  相似文献   
98.
The plasma membrane is a lipid bilayer of < 10 nm width that separates intra- and extra-cellular environments and serves as the site of cell-cell communication, as well as communication between cells and the extracellular environment. As such, biophysical phenomena at and around the plasma membrane play key roles in determining cellular physiology and pathophysiology. Thus, the selective visualization and characterization of the plasma membrane are crucial aspects of research in wide areas of biology and medicine. However, the specific characterization of the plasma membrane has been a challenge using conventional imaging techniques, which are unable to effectively distinguish between signals arising from the plasma membrane and those from intracellular lipid structures. In this regard, interface-specific second harmonic generation (SHG) and sum-frequency generation (SFG) imaging demonstrate great potential. When combined with exogenous SHG/SFG active dyes, SHG/SFG can specifically highlight the plasma membrane as the most prominent interface associated with cells. Furthermore, SHG/SFG imaging can be readily extended to multimodal multiphoton microscopy with simultaneous occurrence of other multiphoton phenomena, including multiphoton excitation and coherent Raman scattering, which shed light on the biophysical properties of the plasma membrane from different perspectives. Here, we review traditional and current applications, as well as the prospects of long-known but unexplored SHG/SFG imaging techniques in biophysics, with special focus on their use in the biophysical characterization of the plasma membrane.  相似文献   
99.
The fall armyworm Spodoptera frugiperda, an invasive insect pest native to the Americas, has established populations throughout eastern China. The North China Plain—a key corn-producing area in East China with a unique topography—was invaded by fall armyworm in 2019 and is seriously threatened by this migratory pest. However, the spatiotemporal extent of the migratory movements of fall armyworm from the North China Plain remains poorly understood. Using an air transport-based trajectory modeling approach that incorporates flight behavior, we simulated the potential nocturnal migration trajectories of fall armyworm from the North China Plain based on historical meteorological data from June to October of 2015–2019, and examined the night-time atmospheric conditions associated with their possible flights. The emigration patterns showed monthly variation in the main landing area and common migration direction. The displacement of newly emerged moths from the North China Plain was concentrated in the Northeast China Plain (including Liaoning, Jilin and Heilongjiang provinces) before late summer, after which they were most likely to undertake return flights to the south (especially into Hubei, Anhui and Hunan provinces). This southwest-northeast aerial migration corridor follows the topography of East China and is affected by the East Asian monsoon. These topographic-atmospheric conditions have resulted in the North China Plain becoming a key stopover for fall armyworm populations engaging in multigenerational long-distance migration across East China. These findings contribute to our knowledge of fall armyworm migration and will aid in the implementation of management and control strategies against this highly migratory agricultural pest.  相似文献   
100.
Soil pH is critically important in regulating soil nutrients and thus influencing the biodiversity and ecosystem functions of terrestrial ecosystems. Despite the ongoing threat of nitrogen (N) pollution especially in the fast-developing regions, it remains unclear how increasing N deposition affects soil pH across global terrestrial ecosystems. By conducting a global meta-analysis with paired observations of soil pH under N addition and control from 634 studies spanning major types of terrestrial ecosystems, we show that soil acidification increases rapidly with N addition amount and is most severe in neutral-pH soils. Grassland soil pH decreases most strongly under high N addition while wetlands are the least acidified. By extrapolating these relationships to global mapping, we reveal that atmospheric N deposition leads to a global average soil pH decline of −0.16 in the past 40 years and regions encompassing Eastern United States, Southern Brazil, Europe, and South and East Asia are the hotspots of soil acidification under N deposition. Our results highlight that anthropogenically amplified atmospheric N deposition has profoundly altered global soil pH and chemistry. They suggest that atmospheric N deposition is a major threat to global terrestrial biodiversity and ecosystem functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号