首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   91篇
  国内免费   40篇
  2024年   2篇
  2023年   15篇
  2022年   20篇
  2021年   17篇
  2020年   28篇
  2019年   50篇
  2018年   45篇
  2017年   25篇
  2016年   31篇
  2015年   36篇
  2014年   43篇
  2013年   75篇
  2012年   39篇
  2011年   44篇
  2010年   49篇
  2009年   44篇
  2008年   29篇
  2007年   43篇
  2006年   24篇
  2005年   44篇
  2004年   24篇
  2003年   34篇
  2002年   25篇
  2001年   13篇
  2000年   10篇
  1999年   9篇
  1998年   12篇
  1997年   5篇
  1996年   8篇
  1995年   11篇
  1994年   8篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有890条查询结果,搜索用时 62 毫秒
61.
Practical, cheap, and stereoselective synthetic methods were applied to the preparation of novel 1‐(aminoalkyl)naphthol and γ‐aminoalcohol tridentate ligands. The ligands obtained were conveniently applied with good results as catalytic sources in the borane‐mediated enantioselective reduction of acetophenone with borane dimethylsulfide. Conformational analysis through molecular modeling allows the rationalization of observed stereochemical outcomes. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
62.
The asymmetric leaves 1 ( as1 ) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED -like homeobox ( KNOX ) genes ( BP , KNAT2 and KNAT6 ) and ETTIN / ARF3 , is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2 . Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.  相似文献   
63.
The pentein superfamily is a mechanistically diverse superfamily encompassing both noncatalytic proteins and enzymes that catalyze hydrolase, dihydrolase and amidinotransfer reactions on guanidine substrates. Despite generally low sequence identity, they possess a conserved structural fold and display common mechanistic themes in catalysis. The structurally characterized catalytic penteins possess a conserved core of residues that include a Cys, His and two polar, guanidine-binding residues. All known catalytic penteins use the core Cys to attack the substrate's guanidine moiety to form a covalent thiouronium adduct and all cleave one or more of the guanidine C―N bonds. The mechanistic information compiled to date supports the hypothesis that this superfamily may have evolved divergently from a catalytically promiscuous ancestor.  相似文献   
64.
The lethal giant larvae (lgl) gene was first identified more than 30 years ago in Drosophila and characterized as a tumor suppressor gene. Studies in budding yeast, flies and mammals all indicate that the evolutionarily conserved Lgl family proteins play an important role in cell polarity. Sro7/77, the yeast Lgl homologues, are important for the establishment and reinforcement of cell polarity through their localized interaction and kinetic activation of the post-Golgi secretion machinery. As for higher eukaryotes, both in epithelial polarity and asymmetric cell division, the role of Lgl protein is deployed by localizing proteins to the membrane in a polarized fashion. In addition, Lgl is transiently required during the establishment phase of polarity, implicating that Lgl functions at strategic time points for proliferation control. Studies in cancer biology provide direct connections between malfunction of Lgl and formation, progression and metastasis of various cancers. Here, we review recent advances in the field, focusing on the function of the Lgl family in cellular polarization.  相似文献   
65.
Reiman J 《Bioethics》2007,21(6):329-341
Lee claims that foetuses and adult humans are phases of the same identical substance, and thus have the same moral status because: first, foetuses and adults are the same physical organism, and second, the development from foetus to adult is quantitative and thus not a change of substance. Versus the first argument, I contend that the fact that foetuses and adults are the same physical organism implies only that they are the same thing but not the same substance, much as living adults and their corpses are the same thing (same body) but not the same substance. Against Lee's second argument, I contend that Lee confuses the nature of a process with the nature of its result. A process of quantitative change can produce a change in substance. Lee also fails to show that foetuses are rational and thus have all the essential properties of adults, as required for them to be the same substance. Against the pro-choice argument from asymmetric value (that only the fact that a human has become conscious of its life and begun to count on its continuing can explain human life's asymmetric moral value, i.e. that it is vastly worse to kill a human than not to produce one), Lee claims that foetus's lives are asymmetrically valuable to them before consciousness. This leads to counterintuitive outcomes, and it confuses the goodness of life (a symmetric value that cannot account for why it is worse to kill a human than not produce one) with asymmetric value.  相似文献   
66.
Brown trout populations in the Hardanger Fjord, Norway, have declined drastically due to increased exposure to salmon lice from salmonid aquaculture. We studied contemporary samples from seven populations and historical samples (1972 and 1983) from the two largest populations, one of which has declined drastically whereas the other remains stable. We analysed 11 microsatellite loci, including one tightly linked to the UBA gene of the major histocompatibility class I complex (MHC) and another locus linked to the TAP2A gene, also associated with MHC. The results revealed asymmetric gene flow from the two largest populations to the other, smaller populations. This has important conservation implications, and we predict that possible future population recoveries will be mediated primarily by the remaining large population. Tests for selection suggested diversifying selection at UBA, whereas evidence was inconclusive for TAP2A. There was no evidence for temporally fluctuating selection. We assessed the distribution of adaptive divergence among populations. The results showed the most pronounced footprints of selection between the two largest populations subject to the least immigration. We suggest that asymmetric gene flow has an important influence on adaptive divergence and constrains local adaptive responses in the smaller populations. Even though UBA alleles may not affect salmon louse resistance, the results bear evidence of adaptive divergence among populations at immune system genes. This suggests that similar genetic differences could exist at salmon louse resistance loci, thus rendering it a realistic scenario that differential population declines could reflect differences in adaptive variation.  相似文献   
67.
Background and Aims Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows.Methods A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology.Key Results Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area.Conclusions The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant–pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming.  相似文献   
68.
Homomeric coiled‐coils can self‐assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled‐coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled‐coils. Collectively, our results demonstrate that high‐resolution structure of coiled‐coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled‐coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled‐coils. The computational methods developed here should be broadly applicable to studies of sequence‐structure relationships in coiled‐coils and the design of higher order assemblies with improved oligomerization specificity. Proteins 2015; 83:235–247. © 2014 Wiley Periodicals, Inc.  相似文献   
69.
Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R‐selective HNL enzyme containing an α/β‐hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1‐C2 bond and the rotation of the generated cyanide ion (CN?) follow, afterwards, CN? abstracts a proton from His236 via Ser81. The C1‐C2 bond cleavage and the protonation of CN? correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol?1), suggesting that both of the two processes contribute a lot to rate‐limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1‐C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol?1. The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN? is stabilized by the hydroxyl group of Ser81 and the main‐chain NH‐groups of Ala13 and Phe82. Proteins 2015; 83:66–77. © 2014 Wiley Periodicals, Inc.  相似文献   
70.
Describing, understanding and predicting the spatial distribution of genetic diversity is a central issue in biological sciences. In river landscapes, it is generally predicted that neutral genetic diversity should increase downstream, but there have been few attempts to test and validate this assumption across taxonomic groups. Moreover, it is still unclear what are the evolutionary processes that may generate this apparent spatial pattern of diversity. Here, we quantitatively synthesized published results from diverse taxa living in river ecosystems, and we performed a meta‐analysis to show that a downstream increase in intraspecific genetic diversity (DIGD) actually constitutes a general spatial pattern of biodiversity that is repeatable across taxa. We further demonstrated that DIGD was stronger for strictly waterborne dispersing than for overland dispersing species. However, for a restricted data set focusing on fishes, there was no evidence that DIGD was related to particular species traits. We then searched for general processes underlying DIGD by simulating genetic data in dendritic‐like river systems. Simulations revealed that the three processes we considered (downstream‐biased dispersal, increase in habitat availability downstream and upstream‐directed colonization) might generate DIGD. Using random forest models, we identified from simulations a set of highly informative summary statistics allowing discriminating among the processes causing DIGD. Finally, combining these discriminant statistics and approximate Bayesian computations on a set of twelve empirical case studies, we hypothesized that DIGD were most likely due to the interaction of two of these three processes and that contrary to expectation, they were not solely caused by downstream‐biased dispersal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号