首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3656篇
  免费   358篇
  国内免费   143篇
  4157篇
  2024年   5篇
  2023年   30篇
  2022年   47篇
  2021年   55篇
  2020年   86篇
  2019年   106篇
  2018年   107篇
  2017年   101篇
  2016年   163篇
  2015年   159篇
  2014年   148篇
  2013年   198篇
  2012年   153篇
  2011年   153篇
  2010年   155篇
  2009年   226篇
  2008年   206篇
  2007年   221篇
  2006年   148篇
  2005年   176篇
  2004年   156篇
  2003年   117篇
  2002年   127篇
  2001年   113篇
  2000年   101篇
  1999年   114篇
  1998年   98篇
  1997年   78篇
  1996年   98篇
  1995年   66篇
  1994年   73篇
  1993年   70篇
  1992年   50篇
  1991年   27篇
  1990年   39篇
  1989年   35篇
  1988年   31篇
  1987年   20篇
  1986年   16篇
  1985年   13篇
  1984年   20篇
  1983年   11篇
  1982年   11篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1977年   5篇
  1976年   2篇
  1974年   3篇
  1973年   3篇
排序方式: 共有4157条查询结果,搜索用时 15 毫秒
991.
Although it is known that floral dimorphism contributes to the maintenance of mixed breeding systems, the consequences of producing progeny of a contrasting genetic background and seeds with differential resource allocation has been practically ignored regarding establishment of belowground organisms–plant interactions. This article evaluates the combined effect of floral dimorphism with cross type and light environment on interactions between Ruellia nudiflora and arbuscular mycorrhizal fungi (AMF). R. nudiflora produces cleistogamous (CL) flowers that exhibit obligate self‐pollination and chasmogamous (CH) flowers with facultative self‐ (CHs) or cross‐ (CHc) pollination. We evaluated the establishment of the plant–AMF interaction in progeny derived from each floral type, under two light conditions (shaded versus open). We established different scenarios depending on the existence of inbreeding depression (ID) and whether the differential resource allocation (DRA) to CH and CL flowers affected the R. nudiflora–AMF interaction. We predicted that under shaded light conditions there might be an intensification of ID, having a negative effect on AMF colonisation. The percentages of hyphae and vesicles in the harvested roots was significantly higher in the shaded plants (F ≥ 4.11, < 0.05), while progeny of CHc and CHs presented a higher percentage of hyphae and vesicle colonisation compared to CL progeny (F = 15.26, < 0.01). The results show that DRA to CH flowers and light availability both determines the establishment of R. nudiflora–AMF interaction. The results also suggest that even under stressful light conditions, endogamy does not affect this interaction, which may explain the success of R. nudiflora as an invasive species.  相似文献   
992.
Gametes were induced separately in cultures of each mating type of the heterothallic, isogamous colonial volvocalean Gonium pectorale O. F. Müll. to examine the tubular mating structure (TMS) of both mating types plus and minus (plus and minus), referred to as “bilateral mating papillae.” Addition of dibutyryl cyclic adenosine monophosphate (DcAMP or db‐cAMP) and 3‐isobutyl‐1‐methylxanthine (IBMX) to approximately 3‐week‐old cultures of each mating type induced immediate release of naked gametes from the cell walls. Both plus and minus gametes formed a TMS in the anterior region of the protoplasts. Accumulation of actin was visualized by antibody staining in the TMS of both mating types as occurs in the TMS (fertilization tubule) of the plus gametes of the unicellular volvocalean Chlamydomonas reinhardtii P. A. Dang. Induction of naked gametes with a TMS in each mating type will be useful for future cell biological and evolutionary studies of the isogametes of colonial volvocalean algae.  相似文献   
993.
Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species.  相似文献   
994.
It is increasingly realized that the potential for male mate choice is widespread across many taxa. However, measurements of the relative magnitude of the fitness benefits that such choice can confer are lacking. Here, we directly measured, in a comprehensive set of tests that manipulated key variables, the fitness benefits of male mate choice in Drosophila melanogaster by measuring egg production in females that were chosen or rejected by males. The results provided significant evidence for male mate choice. In absolute terms, the observed degree of choice increased male fitness by an average of only 1.59 eggs. However, using a novel technique we show that this benefit of choice represented 14.5% of the maximum potential fitness benefit of choice. The magnitude of mate choice was not significantly altered by variation in (1) mate compatibility, (2) phenotypic plasticity in male mate choice, or (3) whether choosing males were preferred or nonpreferred by females. Overall, we show that male mate choice represents a subtle but significant opportunity for sexual selection, and we offer a novel and widely applicable method for quantifying mate choice.  相似文献   
995.
In simultaneous hermaphrodites with reciprocal mating, multiple mating may be a male strategy that conflicts with female interests, and therefore an intra‐individual sexual conflict regarding the number of matings may be expected. The evolutionary outcome of this sexual conflict will depend on the costs and benefits that extra mating entails for each sexual function. In the present study, we investigated the costs and benefits of multiple mating on cocoon number, cocoon mass, and cocoon hatching success in the redworm Eisenia andrei, a simultaneous hermaphrodite with reciprocal insemination, by manipulating the number of matings with different partners. We did not detect any reduction in the female reproductive output (number and mass of cocoons) with increasing number of mating partners. However, we found that multiple mating showed benefits for female reproduction that increased the hatching success of the cocoons. This effect may be a result of increased quantity and/or diversity of sperm in the spermathecae of multiple mated earthworms. Further studies are required to clarify the mechanism underlying the increased cocoon hatching success when redworms engage in multiple matings. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   
996.
Reproductive assurance is a widely accepted explanation for the evolution of selfing, although theory suggests that an evolutionarily stable mixed mating strategy does not maximize seed production. We present a correlation analysis involving 28 species representing 23 families showing that selfing can evolve independently of inbreeding depression. We discuss the cost-benefit trade-off of selfing, in particular the incongruence of whether delayed selfing provides reproductive assurance in 22 species representing 14 families, in which pollen and seed discounting are minimized when pollinators or mates are scarce. Reproductive assurance, in response to frequent pollinator failure, can be reconciled with an evolutionarily stable mixed mating system contributed to by delayed selfing, which is still advantageous even if there is strong inbreeding depression.  相似文献   
997.
Lake Tanganyika, Africa's oldest lake, harbours an impressive diversity of cichlid fishes. Although diversification in its radiating groups is thought to have been initially rapid, cichlids from Lake Tanganyika show little evidence for ongoing speciation. In contrast, examples of recent divergence among sympatric colour morphs are well known in haplochromine cichlids from Lakes Malawi and Victoria. Here, we report genetic evidence for recent divergence between two sympatric Tanganyikan cichlid colour morphs. These Petrochromis morphs share mitochondrial haplotypes, yet microsatellite loci reveal that their sympatric populations form distinct genetic groups. Nuclear divergence between the two morphs is equivalent to that which arises geographically within one of the morphs over short distances and is substantially smaller than that among other sympatric species in this genus. These patterns suggest that these morphs diverged only recently, yet that barriers to gene flow exist which prevent extensive admixture despite their sympatric distribution. The morphs studied here provide an unusual example of active diversification in Lake Tanganyika's generally ancient cichlid fauna and enable comparisons of speciation processes between Lake Tanganyika and other African lakes.  相似文献   
998.
A species' mating system sets limits on the strength of sexual selection. Sexual selection is widespread in dioecious species, but is less well documented in hermaphrodites, and may be less important. We used four highly polymorphic microsatellite markers to assign paternity to broods of the hermaphroditic eastern Pacific volcano barnacle Tetraclita rubescens. These data were used to describe the species' mating system and to examine factors affecting male reproductive success. Tetraclita can sire broods over distances of 11.2 cm, but proximity to the sperm recipient had a highly significant effect on the probability of siring success. There was no effect of body size or the mass of male reproductive tissues on siring success. Broods showed relatively low frequencies of multiple paternity; even at high densities, 75% of broods had only one father. High frequencies of single‐paternity broods imply either that this species does not compete via sperm displacement, or that sperm displacement is extremely effective, potentially explaining the lack of a positive relationship between male investment and paternity. In addition, there was low variance in siring success among individuals, suggesting a lack of strong sexual selection on male traits. Low variance among sires and the strong effect of proximity are probably driven by the unusual biology of a sessile copulating species.  相似文献   
999.
For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle (Chelonia mydas), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2-4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.  相似文献   
1000.
Variability in the way organisms reproduce raises numerous, and still unsolved, questions in evolutionary biology. In this study, we emphasize that fungi deserve a much greater emphasis in efforts to address these questions because of their multiple advantages as model eukaryotes. A tremendous diversity of reproductive modes and mating systems can be found in fungi, with many evolutionary transitions among closely related species. In addition, fungi show some peculiarities in their mating systems that have received little attention so far, despite the potential for providing insights into important evolutionary questions. In particular, selfing can occur at the haploid stage in addition to the diploid stage in many fungi, which is generally not possible in animals and plants but has a dramatic influence upon the structure of genetic systems. Fungi also present several advantages that make them tractable models for studies in experimental evolution. Here, we briefly review the unsolved questions and extant hypotheses about the evolution and maintenance of asexual vs. sexual reproduction and of selfing vs. outcrossing, focusing on fungal life cycles. We then propose how fungi can be used to address these long-standing questions and advance our understanding of sexual reproduction and mating systems across all eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号