首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5925篇
  免费   598篇
  国内免费   291篇
  2024年   20篇
  2023年   91篇
  2022年   92篇
  2021年   134篇
  2020年   183篇
  2019年   258篇
  2018年   212篇
  2017年   203篇
  2016年   204篇
  2015年   221篇
  2014年   295篇
  2013年   369篇
  2012年   223篇
  2011年   227篇
  2010年   192篇
  2009年   284篇
  2008年   294篇
  2007年   315篇
  2006年   296篇
  2005年   271篇
  2004年   231篇
  2003年   204篇
  2002年   194篇
  2001年   157篇
  2000年   153篇
  1999年   126篇
  1998年   115篇
  1997年   97篇
  1996年   95篇
  1995年   84篇
  1994年   77篇
  1993年   88篇
  1992年   87篇
  1991年   96篇
  1990年   68篇
  1989年   62篇
  1988年   56篇
  1987年   38篇
  1986年   53篇
  1985年   66篇
  1984年   54篇
  1983年   37篇
  1982年   44篇
  1981年   37篇
  1980年   29篇
  1979年   21篇
  1978年   15篇
  1976年   12篇
  1973年   10篇
  1972年   7篇
排序方式: 共有6814条查询结果,搜索用时 15 毫秒
951.
The introduction of oligomeric polystyrene (PS) side chains into the conjugated backbone is proven to enhance the processability and electronic properties of semiconducting polymers. Here, two series of donor and acceptor polymers are prepared with different molar percentages of PS side chains to elucidate the effect of their substitution arrangement on the all‐polymer solar cell performance. The observed device performance is lower when the PS side chains are substituted on the donor polymer and higher when on the acceptor polymer, indicating a clear arrangement effect of the PS side chain. The incorporation of PS side chains to the acceptor polymer contributes to the decrease in phase separation domain size in the blend films. However, the reduced domain size was still an order of magnitude larger than the typical exciton diffusion length. A detailed morphological study together with the estimation of solubility parameter of the pristine PS, donor, and acceptor polymers reveals that the relative value of solubility parameter of each component dominantly contributes to the purity of the phase separated domain, which strongly impacts the amount of generated photocurrent and overall solar cell performance. This study provides an understanding of the design strategies to improve the all‐polymer solar cells.  相似文献   
952.
Redox‐active organometallic molecules offer a promising avenue for increasing the energy density and cycling stability of redox flow batteries. The molecular properties change dramatically as the ligands are functionalized and these variations allow for improving the solubility and controlling the redox potentials to optimize their performance when used as electrolytes. Unfortunately, it has been difficult to predict and design the stability of redox‐active molecules to enhance cyclability in a rational manner, in part because the relationship between electronic structure and redox behavior has been neither fully understood nor systematically explored. In this work, rational strategies for exploiting two common principles in organometallic chemistry for enhancing the robustness of pseudo‐octahedral cobalt–polypyridyl complexes are developed. Namely, the spin‐crossover between low and high‐spin states and the chelation effect emerging from replacing three bidentate ligands with two tridentate analogues. Quantum chemical models are used to conceptualize the approach and make predictions that are tested against experiments by preparing prototype Co‐complexes and profiling them as catholytes and anolytes. In good agreement with the conceptual predictions, very stable cycling performance over 600 cycles is found.  相似文献   
953.
954.
  • The environment experienced by plants can influence the phenotype of their offspring. Such transgenerational plasticity can be adaptive when it results in higher fitness of the offspring under conditions correlated with those experienced by the mother plant. However, it has rarely been tested if such anticipatory parental effects may be induced with different environments.
  • We grew clonal replicates of Silene vulgaris under control conditions and three types of stress (nutrient deficiency, copper addition and drought), which are known from natural populations of the species. We then subjected offspring from differently treated mother plants to each of the different stress treatments to analyse the influence of maternal and offspring environment on performance and several functional traits.
  • Current stress treatments strongly influenced biomass and functional traits of the plants, mostly in line with responses predicted by the theory of functional equilibrium. Plant performance was also influenced by maternal stress treatments, and some effects independent of initial size differences remained until harvest. In particular, stressed mothers produced offspring of higher fitness than control plants. However, there was no evidence for treatment‐specific adaptive transgenerational plasticity, as offspring from a mother plant that had grown in a specific environment did not grow better in that environment than other plants.
  • Our results indicate that the maternal environment may affect offspring traits and performance, but also that this transgenerational plasticity is not necessarily adaptive.
  相似文献   
955.
We synthesize findings from one of the world's largest and longest‐running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼ 1000 km2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38‐year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional‐ and global‐change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long‐term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction‐prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger‐scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree‐community composition, and increases in liana (woody vine) abundance. Such large‐scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales.  相似文献   
956.
There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above‐ and below‐average rainfall may foretell consequences of changes in rainfall regime. We compiled long‐term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1–3 year periods of above‐ and below‐average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT–ANPP relationships in above‐ and below‐average PPT years to those that occurred during sequences of multiple above‐ and below‐average years. We found differences in PPT–ANPP relationships in above‐ and below‐average years compared to long‐term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current‐ and prior‐year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior‐year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current‐year PPT declined. Although the mechanisms by which a directional change in the frequency of above‐ and below‐average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above‐ vs. below‐average years, and illustrate the utility of long‐term data to examine these patterns.  相似文献   
957.
The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non‐foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful.  相似文献   
958.
Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within‐generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.  相似文献   
959.
Odor sensation is a sensory modality of considerable significance in the foraging behavior and interactional organization of ants. In the food bait technology, smell is the basis of attraction, which, in turn, is the line of bait use and a key parameter for judging efficacy. Yet, the currently available baits possess low attractiveness to many ant pests. Hence, strategies to produce ant bait with increased attractiveness are needed. Despite evidence that coffee has a diverse aroma complex that affects the behavior of honey bees and ants, its attraction to house-invading ants has yet to be investigated. In a series of Y-tube olfactometer bioassays, we examined the behavioral responses of Tapinoma indicum (TI), Monomorium pharaonis (MP) and Solenopsis geminata (SG) to various coffee-induced odor stimuli, comprised of extracts from Arabica, Robusta and Liberica. All coffee extracts showed an influence on the behavior of TI, MP and SG workers, with Arabica showed the most significant influence to the tested ants. The workers of TI, MP and SG were more attracted to the odor of 0.01% Arabica extract (ONE), in comparison with 0.05% Arabica extract (TWO) or 0.10% Arabica extract (THREE). Arabica extract mixed with sugar (S) elicited a significant attraction from workers of all three species in a balanced competition with either unsweetened Arabica extract or water. These results indicated that coffee, particularly Arabica, was attractive to the foragers of TI, MP and SG, thus, the use of coffee as a novel stimulus agent seems plausible in ant bait development.  相似文献   
960.
Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change – increasing temperature – on the long‐term epidemiology of a natural host–pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host–pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25‐year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long‐term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April‐November) temperature, are markedly influencing the epidemiology of plant disease in this host–pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far‐reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号