首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11951篇
  免费   501篇
  国内免费   704篇
  2023年   111篇
  2022年   154篇
  2021年   195篇
  2020年   236篇
  2019年   329篇
  2018年   269篇
  2017年   232篇
  2016年   295篇
  2015年   293篇
  2014年   566篇
  2013年   799篇
  2012年   327篇
  2011年   586篇
  2010年   440篇
  2009年   574篇
  2008年   633篇
  2007年   614篇
  2006年   580篇
  2005年   517篇
  2004年   381篇
  2003年   407篇
  2002年   394篇
  2001年   257篇
  2000年   267篇
  1999年   235篇
  1998年   216篇
  1997年   189篇
  1996年   203篇
  1995年   202篇
  1994年   219篇
  1993年   197篇
  1992年   192篇
  1991年   161篇
  1990年   161篇
  1989年   145篇
  1988年   128篇
  1987年   118篇
  1986年   103篇
  1985年   155篇
  1984年   223篇
  1983年   171篇
  1982年   144篇
  1981年   140篇
  1980年   118篇
  1979年   71篇
  1978年   40篇
  1977年   42篇
  1976年   44篇
  1975年   22篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
51.
Summary It has previously been shown by Macey and Farmer (Biochim. Biophys. Acta 211:104–106, 1970) that phloretin inhibits urea transport across the human red cell membrane yet has no effect on water transport. Jennings and Solomon (J. Gen. Physiol. 67:381–397, 1976) have shown that there are separate lipid and protein binding sites for phloretin on the red cell membrane. We have now found that urea transport is inhibited by phloretin binding to the lipids with aK 1 of 25±8 m in reason-able agreement with theK D of 54±5 m for lipid binding. These experiments show that lipid/protein interactions can alter the conformational state of the urea transport protein. Phloretin binding to the protein site also modulates red cell urea transport, but the modulation is opposed by the specific stilbene anion transport inhibitor, DIDS (4,4-diisothiocyano-2,2-stilbene disulfonate), suggesting a linkage between the urea transport protein and band 3. Neither the lipid nor the protein phloretin binding site has any significant effect on water transport. Water transport is, however, inhibited by up to 30% in a pH-dependent manner by DIDS binding, which suggests that the DIDS/band 3 complex can modulate water transport.  相似文献   
52.
鲫鱼尾部神经分泌系统显微和亚显微结构的季节性变化   总被引:5,自引:0,他引:5  
鲫鱼尾部神经分泌系统的神经分泌细胞和它的轴突中可观察到各种不同电子密度的颗粒。在性腺各个不同的发育阶段,该系统的分泌物具有累积、充满、释放和恢复这样一种周期性变化,由此说明鲫鱼的尾部神经分泌系统和它的生殖有关。  相似文献   
53.
Synopsis Young-of-the-year largemouth bass,Micropterus salmoides, were exposed to four concentrations of sulphuric acid (pH levels 7.2, 6.1, 4.8, and 3.7) for 30 days, and the frequencies of feeding acts and activity bouts, and time budgets were recorded. Juveniles at pH 6.1 and at pH 4.8 performed the two feeding acts, bites and orientations, more often, and spent more time feeding than bass at pH 7.2. Bass at pH 3.7, however, reduced feeding, and spent a significantly larger portion of their time hovering in the water column. Frequencies of comfort and agonistic acts increased with a decline in pH. Alterations of behavioural repertoires of young-of-the-year largemouth bass were useful indicators of sulphuric acid exposure.  相似文献   
54.
Peroxidation of membrane lipids has been hypothesized to play a key role in various types of tissue degeneration and pathology. Lipid peroxides are formed when oxygen reacts with an unsaturated fatty acid chain. Virtually all of the unsaturated fatty acids in biological systems are bound by ester linkages in phospholipids or triglycerides. Phospholipid and triglyceride peroxides are primary products of lipid peroxidation and have rarely been measured. Most of the commonly used methods for detection of lipid peroxidation are based on detection of malondialdehyde or other chemical species that are derived from oxidized fatty acids. This review presents an overview of recently developed methods aimed at identifying and measuring oxidized phospholipids and triglycerides which are direct evidence of the occurrence of lipid peroxidation in vivo.  相似文献   
55.
Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.Non-standard abbreviations EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MDP methylene diphosphonic acid - NMR nuelear magnetic resonance - PCA perchloric acid - PCV packed cell volume - Pi inorganic phosphate - Pic sytoplasmic inorganic phosphate - Piv vacuolar inorganic phosphate - ppm parts per million - SP sugar phosphates - TCA trichloroacetic acid  相似文献   
56.
P-31 NMR investigations were performed with the green alga Chlorella fusca under anaerobic conditions in the dark and in the light.In spectra of cells in the dark the signal of intracellular, nonvacuolar Pi indicates a pH in its chemical environment of 7.0–7.2. Upon illumination this signal looses intensity and shifts to lower field, corresponding to a pH of 7.7. Further downfield no other signal that could be attributed to a Pi-pool in more alkaline environment was detected. By the use of 2-deoxyglucose-6-phosphate as an indicator of cytoplasmic pH, this Pi-signal was assigned to the cytoplasm. The pH increase in the cytoplasm upon transfer of cells from the dark to the light is the same as that previously observed upon transfer of cells from anaerobic to aerobic conditions.In cells performing only cyclic photophosphorylation the cytoplasmic pH is lower than in photosynthesizing cells but still 0.2 pH units higher than in the cells in the dark. The reasons for the missing of a signal of stromal Pi and for the difference in cytoplasmic pH in photosynthesizing cells and those capable only of cyclic photophosphorylation are discussed.Non-standard abbreviations 2dG 2-Deoxyglucose - dG-6-P 2-deoxyglucose-6-phosphate - DCMU 3,4-dichlorophenyl-dimethylurea - MOPSO 3-(N-morpholino)-2-hydroxypropane sulfonic acid - P-31 NMR P-31 nuclear magnetic resonance  相似文献   
57.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   
58.
The internal pH of peroxisomes in the yeasts Hansenula polymorpha, Candida utilis and Trichosporon cutaneum X4 was estimated by 31P nuclear magnetic resonance (NMR) spectroscopy. 31P NMR spectra of suspensions of intact cells of these yeasts, grown under conditions of extensive peroxisomal proliferation, displayed two prominent Pi-peaks at different chemical shift positions. In control cells grown on glucose, which contain very few peroxisomes, only a single peak was observed. This latter peak, which was detected under all growth conditions, was assigned to cytosolic Pi at pH 7.1. The additional peak present in spectra of peroxisome-containing cells, reflected Pi at a considerably lower pH of approximately 5.8–6.0. Experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazon (CCCP) and the ionophores valinomycin and nigericin revealed that separation of the two Pi-peaks was caused by a pH-gradient across a membrane separating the two pools. Experiments with chloroquine confirmed the acidic nature of one of these pools. In a number of transfer experiments with the yeast H. polymorpha it was shown that the relative intensity of the Pi-signal at the low pH-position was correlated to the peroxisomal volume fraction. These results strongly suggest that this peak has to be assigned to Pi in peroxisomes, which therefore are acidic in nature. The presence of peroxisome-associated Pi was confirmed cytochemically.Abbreviations CCCP Carbonyl cyanide m-chlorophenylhydrazon - DCCD N,N-dicyclohexylcarbodiimide  相似文献   
59.
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial uptake rate of acetic acid as a pH probe (Sentenac and Grignon (1987) Plant Physiol. 84, 1367). Acetic acid and orthophosphate uptake rates and NO 3 - accumulation were slowed down, while 86Rb+ uptake and K+ accumulation rates were increased by HCO 3 - . These effects were similar to those induced by 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid/2-amino-2-(hydroxymethyl)-1,3-propanediol (Hepes-Tris). They were more pronounced when the H+ excretion was strong, were rapidly reversible and were not additive to those of Hepes-Tris. The hypothesis is advanced that the buffering system CO2/H2CO3/HCO 3 - accelerated the diffusion of equivalent H+ inside the cell wall towards the medium. This attenuated the surface pH shift in the vicinity the plasma membrane and affected the coupling between the proton pump and cotransport systems.Abbreviations FW fresh weight - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Jaa acetic acid influx - JK + K+ influx - JPi orthophosphate influx - Mes 2-(N-morpholino)ethanesulfonic acid - pCO2 CO2 partial pressure - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
60.
This study was undertaken in order to demonstrate the extent to which the activity of the plasmalemma H+-ATPase compensates for the charge and acidity flow caused by the sugar-proton symport in cells of chlorella vulgaris Beij.. Detailed analysis of H+ and K+ fluxes from and into the medium together with measurements of respiration, cytoplasmic pH, and cellular ATP-levels indicate three consecutive phases after the onset of H+ symport. Phase 1 occurred immediately after addition of sugar, with an uptake of H+ by the hexoseproton symport and charge compensation by K+ loss from the cells and, to a smaller degree, by loss of another ion, probably a divalent cation. This phase coincided with strong membrane depolarization. Phase 2 started approximately 5 s after addition of sugar, when the acceleration of the H+-ATPase caused a slow-down of the K+ efflux, a decrease in the cellular ATP level and an increase in respiration. The increased respiration was most probably responsible for a pronounced net acidification of the medium. This phase was inhibited in deuterium oxide. In phase 3, finally, a slow rate of net H+ uptake and K+ loss was established for several further minutes, together with a slight depolarization of the membrane. There was hardly any pH change in the cytoplasm, because the cytoplasmic buffering capacity was high enough to stabilize the pH for several minutes despite the net H+ fluxes. The quantitative participation of the several phases of H+ and K+ flow depended on the pH of the medium, the ambient Ca2+ concentration, and the metabolic fate of the transported sugar. The results indicate that the activity of the H+-ATPase never fully compensated for H+ uptake by the sugar-symport system, because at least 10% of symport-caused charge inflow was compensated for by K+ efflux. The restoration of pH in the cytoplasm and in the medium was probably achieved by metabolic reactions connected to increased glycolysis and respiration.Abbreviations DMO dimethyloxazolidinedione - EDTA ethylcnediaminetetraacetic acid - p.c. packed cell volume  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号