首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   105篇
  国内免费   47篇
  2024年   5篇
  2023年   25篇
  2022年   35篇
  2021年   31篇
  2020年   49篇
  2019年   59篇
  2018年   67篇
  2017年   36篇
  2016年   59篇
  2015年   52篇
  2014年   108篇
  2013年   166篇
  2012年   74篇
  2011年   155篇
  2010年   103篇
  2009年   151篇
  2008年   142篇
  2007年   140篇
  2006年   119篇
  2005年   93篇
  2004年   100篇
  2003年   55篇
  2002年   63篇
  2001年   31篇
  2000年   33篇
  1999年   26篇
  1998年   19篇
  1997年   23篇
  1996年   17篇
  1995年   26篇
  1994年   20篇
  1993年   14篇
  1992年   11篇
  1991年   8篇
  1990年   13篇
  1989年   8篇
  1988年   10篇
  1987年   10篇
  1986年   7篇
  1985年   21篇
  1984年   29篇
  1983年   10篇
  1982年   19篇
  1981年   4篇
  1980年   11篇
  1979年   16篇
  1978年   6篇
  1977年   5篇
  1976年   6篇
  1974年   3篇
排序方式: 共有2296条查询结果,搜索用时 461 毫秒
71.
UDP-galactose 4′-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.  相似文献   
72.
DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ε that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III–clamp–exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis.  相似文献   
73.
74.
Mutations in neuronal voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A may play an important role in the etiology of neurological diseases and psychiatric disorders, besides various types of epilepsy. Here we describe a 3-year-old boy with autistic features, language delay, microcephaly and no history of seizures. Array-CGH analysis revealed an interstitial deletion of ~ 291.9 kB at band 2q24.3 disrupting the entire SCN2A gene and part of SCN3A. We discuss the effects of haploinsufficiency of SCN2A and SCN3A on the genetic basis of neurodevelopmental and neurobehavioral disorders and we propose that this haploinsufficiency may be associated not only with epilepsy, but also with autistic features.  相似文献   
75.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   
76.
Abstract

Corynebacterium glutamicum and its close relatives, C. flavum and C. lactofennentum, have been used for over 3 decades in the industrial production of amino acids by fermentation. Since 1984, several research groups have started programs to develop metabolic engineering principles for amino acid-producing Corynebacferium strains. Initially, the programs concentrated on the isolation of genes encoding (deregulated) biosynthetic enzymes and the development of general molecular biology tools such as cloning vectors and DNA transfer methods. With most of the genes and tools now available, recombinant DNA technology can be applied in strain improvement. To accomplish these improvements, it is critical and advantageous to understand the mechanisms of gene expression and regulation as well as the biochemistry and physiology of the species being engineered. This review explores the advances made in the understanding and application of amino acid-producing bacteria in the early 1990s.  相似文献   
77.
In this paper, we derive and analyze a mathematical model for the interactions between phytoplankton and zooplankton in a periodic environment, in which the growth rate and the intrinsic carrying-capacity of phytoplankton are changing with respect to time and nutrient concentration. A threshold value: “Predator’s average growth rate” is introduced and it is proved that the phytoplankton–zooplankton ecosystem is permanent (both populations survive cronically) and possesses a periodic solution if and only if the value is positive. We use TP (Total Phosphorus) concentration to mark the degree of eutrophication. Based on experimental data, we fit the growth rate function and the environmental carrying capacity function with temperature and nutrient concentration as independent variables. Using measured data of temperature on water bodies we fit a periodic temperature function of time, and this leads the growth rate and intrinsic carrying-capacity of phytoplankton to be periodic functions of time. Thus we establish a periodic system with TP concentration as parameter. The simulation results reveal a high diversity of population levels of the ecosystem that are mainly sensitive to TP concentration and the death-rate of zooplankton. It illustrates that the eruption of algal bloom is mainly resulted from the increasing of nutrient concentration while zooplankton only plays a role to alleviate the scale of algal bloom, which might be used to explain the mechanism of algal bloom occurrence in many natural waters. What is more, our results provide a better understanding of the traditional manipulation method.  相似文献   
78.
Hodgkin and Huxley (HH) discovered that voltages control ionic currents in nerve membranes. This led them to describe electrical activity in a neuronal membrane patch in terms of an electronic circuit whose characteristics were determined using empirical data. Due to the complexity of this model, a variety of heuristics, including relaxation oscillator circuits and integrate-and-fire models, have been used to investigate activity in neurons, and these simpler models have been successful in suggesting experiments and explaining observations. Connections between most of the simpler models had not been made clear until recently. Shown here are connections between these heuristics and the full HH model. In particular, we study a new model (Type III circuit): It includes the van der Pol-based models; it can be approximated by a simple integrate-and-fire model; and it creates voltages and currents that correspond, respectively, to the h and V components of the HH system.  相似文献   
79.
Previously, we showed that inoculation of tobacco with Pseudomonas syringae incompatible pv. maculicola results in a rapid and persistent burst of superoxide (O2) from mitochondria, no change in amount of mitochondrial alternative oxidase (AOX) and induction of the hypersensitive response (HR). However, inoculation with incompatible pv. phaseolicola resulted in increased AOX, no O2 burst and no HR. Here, we show that in transgenic plants unable to induce AOX in response to pv. phaseolicola, there is now a strong mitochondrial O2 burst, similar to that normally seen only with pv. maculicola. This interaction did not however result in a HR. This indicates that AOX amount is a key determinant of the mitochondrial O2 burst but also that the burst itself is not sufficient to induce the HR. Surprisingly, the O2 burst normally seen towards pv. maculicola is delayed in plants lacking AOX. This delay is associated with a delayed HR, suggesting that the burst does promote the HR. A O2 burst can also be induced by the complex III inhibitor antimycin A (AA), but is again delayed in plants lacking AOX. The similar mitochondrial response induced by pv. maculicola and AA suggests that electron transport is a target during HR‐inducing biotic interactions.  相似文献   
80.
Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号