首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   28篇
  国内免费   10篇
  2023年   13篇
  2022年   16篇
  2021年   11篇
  2020年   10篇
  2019年   12篇
  2018年   26篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   28篇
  2013年   46篇
  2012年   28篇
  2011年   22篇
  2010年   13篇
  2009年   22篇
  2008年   31篇
  2007年   27篇
  2006年   23篇
  2005年   24篇
  2004年   27篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   14篇
  1999年   7篇
  1998年   7篇
  1997年   14篇
  1996年   9篇
  1995年   16篇
  1994年   14篇
  1993年   17篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   13篇
  1988年   7篇
  1987年   5篇
  1985年   5篇
  1984年   14篇
  1983年   10篇
  1982年   14篇
  1981年   5篇
  1980年   11篇
  1979年   10篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
排序方式: 共有675条查询结果,搜索用时 15 毫秒
11.
The interrelation of palmitate oxidation with amino acid formation in rat brain mitochondria has been investigated in purified mitochondria of nonsynaptic origin by measuring the formation of aspartate, -ketoglutarate, and glutamate during palmitate oxidation, and also by assaying14C-products of [1-14C]palmitate oxidation. Oxidation of palmitate (or [1-14C]palmitate) resulted in the formation of aspartate (or14C-aspartate), and the oxidation was inhibited by aminooxyacetate (an inhibitor of transaminase), Palmitate oxidation also resulted in -ketoglutarate formation, which was sensitive to the effect of aminooxyacetate. Addition of NH4Cl was found to increase14C-products and formation of -ketoglutarate, whereas glutamate formation was not increased unless the rate of palmitate oxidation was reduced by 50% by aminooxyacetate or -ketoglutarate was added exogenously. Exogenous -ketoglutarate was found to decrease14C-products, but not aspartate formation. These results indicated that palmitate oxidation was closely related to aspartate formation via aspartate aminotransferase. During palmitate oxidation without aminooxyacetate or added -ketoglutarate, however, -ketoglutarate was not available for glutamate formation via glutamate dehydrogenase. We discuss the possibility that this was because (a) oxidative decarboxylation of -ketoglutarate to form succinyl-CoA was favored over glutamate formation for the competition for -ketoglutarate in the same pool, and (b) the pool of -ketoglutarate produced in the aspartate aminotransferase reaction did not serve as substrate for glutamate formation.  相似文献   
12.
Substituted enzyme (or ping-pong) mechanisms usually involve enzymes that exist in two forms that alternate during the catalytic reaction. A method is described here for determining the position of the equilibrium of a half reaction in a ping-pong enzyme mechanism that is based on the kinetics of the burst reaction which occurs upon addition of reactants that recycle the enzyme from one form to another. The theoretical basis for the analysis is developed, and the method is applied to the half reaction of the aldimine form of aspartate transaminase with difluoro-oxaloacetate. Special issue dedicated to Herman Bachelard  相似文献   
13.
14.
Genomic clones encoding two isozymes of aspartate aminotransferase (AAT) were isolated from an alfalfa genomic library and their DNA sequences were determined. The AAT1 gene contains 12 exons that encode a cytosolic protein expressed at similar levels in roots, stems and nodules. In nodules, the amount of AAT1 mRNA was similar at all stages of development, and was slightly reduced in nodules incapable of fixing nitrogen. The AAT1 mRNA is polyadenylated at multiple sites differing by more than 250 bp. The AAT2 gene contains 11 exons, with 5 introns located in positions identical to those found in animal AAT genes, and encodes a plastid-localized isozyme. The AAT2 mRNA is polyadenylated at a very limited range of sites. The transit peptide of AAT2 is encoded by the first two and part of the third exon. AAT2 mRNA is much more abundant in nodules than in other organs, and increases dramatically during the course of nodule development. Unlike AAT1, expression of AAT2 is significantly reduced in nodules incapable of fixing nitrogen. Phylogenetic analysis of deduced AAT proteins revealed 4 separate but related groups of AAT proteins; the animal cytosolic AATs, the plant cytosolic AATs, the plant plastid AATs, and the mitochondrial AATs.  相似文献   
15.
分布于细胞内线粒体及细胞质中的天门冬氨酸氨基转移酶(AST·EC·2·6·1·1)是人血清中含有的两种同工酶,分别称为AST-m和AST-c同工酶.AST-c电泳迁移率介于血清α-球蛋白与β-球蛋白之间.AST-m电泳迁移率相似于γ-球蛋白,琼脂糖凝胶电泳固蓝B染色法对m-AST检出率较低.用NBT显色法则可得到较好效果.  相似文献   
16.
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of14CO2 production from [U–14C]glutamate, [U–14C]aspartate and [1–14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of -ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons.  相似文献   
17.
Abstract: The glutamine cycle has been proposed as a pathway in which glutamine synthesized in glia provides substrate for synthesis of the neurotransmitters glutamate and GABA as they are lost from neurons. To test whether GABA may regulate this pathway, the effect of elevated GABA on the glial enzyme glutamine synthetase was examined in rat brain. Repeated subcutaneous injections of the antiepileptic GABA transaminase inhibitor γ-vinylGABA at a dose of 150 mg/kg per day for 21 days reduced glutamine synthetase activity by 36% in the cortex and 22% in the cerebellum. At 30 mg/kg per day, glutamine synthetase activity was reduced by 9.5% in the cortex but unchanged in the cerebellum. The reductions were brain specific because the skeletal muscle and liver enzymes were unaffected by γ-vinylGABA administration. Amino acid analysis of the cortex from γ-vinylGABA-treated rats demonstrated a 270% increase in GABA levels after 150 mg/kg but no change after 30 mg/kg. GABA levels and glutamine synthetase activity were inversely correlated. The 150 mg/kg dose significantly lowered cortical glutamine and glutamate levels. The decline in brain glutamine synthetase activity with chronic γ-vinylGABA administration developed gradually over time and may be due to the slow turnover of this enzyme in vivo.  相似文献   
18.
Homogenates of specific brain regions of three sensory systems (auditory, olfactory, and visual) were prepared from pigmented Long-Evans Hooded rats and assayed for amino acid concentrations and activities of glutaminase, aspartate aminotransferase (total, cytosolic, and, by difference, mitochondrial), malate dehydrogenase, lactate dehydrogenase, and choline acetyltransferase. Comparing the quantitative distributions among regions revealed significant correlations between AAT and aspartate, between glutaminase and glutamate, between glutamate and glutamine, and between AAT plus glutaminase, or glutaminase alone, and the sum of aspartate, glutamate, and GABA, suggesting a metabolic pathway involving the synthesis of a glutamate pool as precursor to aspartate and GABA. Of the inhibitory transmitter amino acids, GABA concentrations routinely exceeded those of glycine, but glycine concentrations were relatively high in brainstem auditory structures.  相似文献   
19.
GABA added to rat brain mitochondria causes oxidation of intramitochondrial NAD(P)H as well as inducing glutamate efflux from the mitochondrial matrix. The rate of NAD(P)H oxidation shows saturation characteristics, depends on GABA transport across the mitochondrial membrane and is inhibited by non-penetrant compounds and by the metal-complexing agent bathophenanthroline. These results show the existence of a specific GABA carrier. Inhibition studies strongly suggest the existence of two separate binding sites, namely the GABA binding site and the dicarboxylates binding site, as well as suggest the presence of a metal ion (ions) at GABA binding site. The occurrence of a GABA/GLUTAMATE antiport is proposed which allows a cyclical route to account for GABA synthesis and degradation in brain.  相似文献   
20.
The rotational freedom of tryptophan residues in protein-ligand complexes was studied by measuring steady-state fluorescence anisotropies under conditions of oxygen quenching. There was a decrease in the oxygen bimolecular quenching constant upon complexation of trypsin and alpha-chymotrypsin with proteinaceous trypsin inhibitors, of lysozyme with N-acetylglucosamine (NAG) and di(N-acetyl-D-glucosamine) ((NAG)2) and of hexokinase with glucose. Binding of the bisubstrate analogue N-phosphonacetyl-L-aspartate (PALA) to aspartate transcarbamylase (ATCase) and binding of biotin to avidin resulted in increased oxygen quenching constants. The tryptophan of human serum albumin (HSA) in the F state was more accessible to oxygen quenching than that in the N state. With the exception of ATCase, the presence of subnanosecond motions of the tryptophan residues in all the proteins is suggested by the short apparent correlation times for fluorescence depolarization and by the low apparent anisotropies obtained by extrapolation to a lifetime of zero. Complex formation evidently resulted in more rigid structures in the case of trypsin, alpha-chymotrypsin and lysozyme. The effects of glucose binding on hexokinase were not significant. Binding of biotin to avidin resulted in a shorter correlation time for the tryptophan residues. The N --> F transition in HSA resulted in a more rigid environment for the tryptophan residue. Overall, these changes in the dynamics of the protein matrix and motional freedom of tryptophan residues due to complex formation and subsequent conformational changes are in the same direction as those observed by other techniques, especially hydrogen exchange. Significantly, the effects of complex formation on protein dynamics are variable. Among the limited number of cases we examined, the effects of complex formation were to increase, decrease or leave unchanged the apparent dynamics of the protein matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号