首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   5篇
  国内免费   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   11篇
  2013年   17篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   7篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   8篇
  2002年   10篇
  2001年   10篇
  2000年   3篇
  1999年   9篇
  1998年   10篇
  1997年   5篇
  1996年   8篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1986年   1篇
  1982年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
91.
92.
The protochordate ascidian Polyandrocarpa misakiensis has a striking ability to regenerate. When the posterior half of the adult body is amputated, the anterior half completely loses the esophagus, stomach and intestine. These organs are reconstituted in a week. Histological observation revealed that the regeneration involves transdifferentiation of the atrial epithelium near the cut surface. The morphological features of the gut primordium were similar to those observed in the developing bud of this species. Inhibitors of the synthesis of retinoic acid (RA) suppressed the formation of the gut. 13‐cis RA rescued the regenerates from the inhibitor‐induced hypoplasia. These results suggest that RA is required for the regeneration of the gut. A gene encoding the RA receptor (Pm‐RAR) and its target gene, TRAMP, were expressed in and around the regenerating gut. Pm‐RAR‐specific and TRAMP‐specific double‐stranded RNA molecules inhibited the regeneration of the gut, indicating that the RA signal is mediated at least in part by Pm‐RAR and TRAMP. These results suggested that RA triggers the transdifferentiation of the atrial epithelium into the gut in regenerating animals, as it does during asexual reproduction.  相似文献   
93.
In anural (tailless) ascidian species, functional embryonic muscle is not formed. In urodele (tailed) ascidians, macho-1 functions as a maternally supplied factor for embryonic muscle formation. The failure of embryonic muscle development in anural ascidians may be due to the suppression of macho-1 expression. In this paper, however, we report the expression of macho-1 in embryos of an anural ascidian, Molgula tectiformis. Although M. tectiformis has lost the developmental potential to form functional embryonic muscle, macho-1 was expressed in a very similar manner as in urodele ascidians. This result, together with those of previous studies, strongly suggests that in M. tectiformis the upstream genetic cascade responsible for muscle formation is intact, while the downstream cascade including the expression of muscle structural genes is severely affected.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
94.
Developmental processes can change during evolution at many levels of the ontogeny of an individual. Embryos of solitary ascidians have a largely invariant mode of development, with fixed cleavage patterns and fate maps. Thus the cell lineages and final body plan of the two quite distantly related species considered in this review, Ciona intestinalis and Halocynthia roretzi, are highly similar. However, close comparison of the developmental mechanisms used by these two species provide examples of evolutionary changes and help pinpoint which aspects of development are evolutionarily flexible. Examples of both similarity and diversity are observed in the mechanisms used to generate the full complement of larval muscle. We will describe the changes in muscle-cell lineage, as well as some striking differences in the intercellular signalling pathways used to induce muscle fate. The somewhat surprising conclusion is that in ascidians, as in nematode vulval development, different signalling mechanisms have been adopted to mediate similar interactions between equivalently positioned cells.  相似文献   
95.
Trididemnum clinides is a multi-photosymbiotic ascidian that inhabits shallow coral reef lagoons. Three types of cyanobacteria are harboured in the tunic of the ascidian colony; of these, two are unicellular coccoid cyanobacteria and the other is a multicellular filamentous type. They also differ in ultrastructure and distribution patterns within the host tunic. Microspectrophotometric analysis revealed the composition of photosynthetic pigments in each photosymbiont. One of the coccoid types is yellowish-green and is distributed under the colony surface. This photosymbiont cell preferentially absorbs red and blue light, and therefore the dominant colour in the inner tunic is green. The other two types of coexisting photosymbionts contain the green-light-absorbing R-phycoerythrin as the major photosynthetic pigment; they exploit the wavelengths of light not used by the first type of photosymbiont. In T. clinides, the outer and inner photosymbionts in the tunic have different photosynthetic pigments, which adapt to each microhabitat, thereby sharing the incident light resources effectively.  相似文献   
96.
97.
98.
The enhancer trap approach utilizing transposons yields us information about gene functions and gene expression patterns. In the ascidian Ciona intestinalis, transposon-based transgenesis and insertional mutagenesis were achieved with a Tc1/mariner transposon Minos. We report development of a novel technique for enhancer trap in C. intestinalis. This technique uses remobilization of Minos in the Ciona genome. A Minos vector for enhancer trap was constructed and a tandem array insertion of the vector was introduced into the Ciona genome to create a mutator line. Minos was remobilized in Ciona chromosomes to create new insertions by providing transposases. These transposase-introduced animals were crossed with wild-type animals. Nearly 80% of F1 families showed novel GFP expression patterns. This high-throughput enhancer trap screen will be useful to create new marker transgenic lines showing reporter gene expression in specific tissues and to identify novel patterns of gene expression.  相似文献   
99.
Several morphotypes that so far have been attributed to the allegedly cosmopolitan ascidian Cystodytes dellechiajei occur in the Mediterranean Sea. Colour variation is the difference most frequently reported. In this study, we addressed the genetic structure of this ascidian in relation to geographical location and colour morph. Partial sequences of the gene cytochrome  c oxidase subunit 1 (COI) were obtained from seven populations of the western Mediterranean, encompassing eight colour varieties. All population genetic analyses (exact test, pairwise F ST, hierarchical analysis of molecular variance, multidimensional scaling, nested clade analysis) indicated clearly that differences between colour morphs are large enough to obscure any geographical differentiation when colours are combined within localities. When variance due to colour divergence was removed, however, a significant geographical variability between localities remained. The genetic divergence between the colour morphs analysed was significant in comparisons of the brown and purple forms with the others, but not among the green, blue, and white morphs. Phylogeographic analyses suggest that population fragmentation and range expansions have shaped the present-day distribution of the haplotypes. Taken together with existing chemotype information, our results indicate that several species are present in the area, and that a thorough revision of the genus is necessary.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 203–214.  相似文献   
100.
Ascidians have served as an appropriate experimental system in developmental biology for more than a century. The fertilized egg develops quickly into a tadpole larva, which consists of a small number of organs including epidermis, central nervous system with two sensory organs, endoderm and mesenchyme in the trunk, and notochord and muscle in the tail. This configuration of the ascidian tadpole is thought to represent the most simplified and primitive chordate body plan. Their embryogenesis is simple, and lineage of embryonic cells is well documented. The ascidian genome contains a basic set of genes with less redundancy compared to the vertebrate genome. Cloning and characterization of developmental genes indicate that each gene is expressed under discrete spatio-temporal pattern within their lineage. In addition, the use of various molecular techniques in the ascidian embryo system highlights its advantages as a future experimental system to explore the molecular mechanisms underlying the expression and function of developmental genes as well as genetic circuitry responsible for the establishment of the basic chordate body plan. This review is aimed to highlight the recent advances in ascidian embryology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号