首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3036篇
  免费   523篇
  国内免费   847篇
  4406篇
  2024年   80篇
  2023年   138篇
  2022年   99篇
  2021年   139篇
  2020年   169篇
  2019年   214篇
  2018年   209篇
  2017年   191篇
  2016年   212篇
  2015年   144篇
  2014年   139篇
  2013年   244篇
  2012年   132篇
  2011年   158篇
  2010年   178篇
  2009年   156篇
  2008年   166篇
  2007年   182篇
  2006年   188篇
  2005年   136篇
  2004年   138篇
  2003年   129篇
  2002年   91篇
  2001年   90篇
  2000年   100篇
  1999年   84篇
  1998年   66篇
  1997年   43篇
  1996年   51篇
  1995年   37篇
  1994年   42篇
  1993年   28篇
  1992年   40篇
  1991年   18篇
  1990年   26篇
  1989年   32篇
  1988年   13篇
  1987年   16篇
  1986年   11篇
  1985年   15篇
  1984年   13篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1980年   9篇
  1979年   4篇
  1978年   10篇
  1977年   4篇
  1974年   2篇
  1958年   2篇
排序方式: 共有4406条查询结果,搜索用时 515 毫秒
81.
The prevalence of patchy structures in vegetation is a common feature in semi-arid ecosystems. Although the effect of patches on seed density is widely known, we still lack information on how patch features affect seed bank density and composition. Our aim was to answer two basic questions: (1) How do seed bank density and composition vary within and outside patch aboveground physical limits? and (2) Do patch characteristics affect soil seed bank density and composition? We sampled 50 shrub patches in a semi-arid gypsum system in Central Spain, measuring patch size, composition and structure, and seed bank at three locations per shrub (centre, edge and outside). We calculated the effect of interior patch location, patch composition and structure on seed density and composition. Patches acted both as seed sources, increasing seed density in neighbouring areas and as seed sinks by trapping seeds from bare areas. Patch structure (erect perennial cover) had the greatest effect on seed bank density, whereas patch size and microslope had the greatest influence on bare area density. Patch structure, composition and interior location explained the variation in seed bank composition. Patch effect extends to the surrounding bare matrix creating a seed bank gradient in density and composition. This effect is modulated by patch structure and composition and affects seed bank composition. Our results suggest that the spatial structure of gypsum community seed banks may act as a mechanism for a spatial storage effect contributing to the maintenance of high levels of diversity in semi-arid environments  相似文献   
82.
The South American corridor of seasonally dry vegetation (SACSV) includes different types of physiognomies forming a continuous corridor with high biodiversity and endemism; however, little attention has been paid to the conservation of the SACSV. As this is an area with great diversity, cataloguing all the species is challenging. Thus, we suggest the use of Leguminosae species (trees and shrubs) as bioindicators of the different types of vegetation present in the area and to identify priority areas for conservation of the SACSV, since the family is highly represented in this vegetation. The study area was divided into 358 grid cells with recorded specimens. For each grid cell, species richness, taxonomic diversity, number of species restricted to one type of vegetation, and threatened and indicator species of phytogeographic domain were calculated. To determine the phytogeographic domains and indicator species, analysis of similarity, cluster and indicator species (ISA) were performed. The results show that 43% of the grid cells (154) have high biological importance for conservation (high taxonomic diversity, species richness and number of restricted species), all of which lie outside of protected areas. We identified 72 indicator species for seven floristic units, which, in general, include areas of the same phytogeographic domain, supporting the existing classification systems. We suggest that for effective conservation of biodiversity present in the SACSV, it is necessary to establish protected areas throughout the SACSV.  相似文献   
83.
The line-intersect technique was used to measure the loading of large woody debris in a 1.8 km reach of the Thomson River, Victoria (catchment area of 3540 km2). A debris census (measuring every item present) was done over 0.775 km of this reach. The transect technique over-estimated the actual loading revealed by the census. The loading of debris 0.01 m in diameter for the total 1.8 km reach was 0.0172 m3 m–2, which is higher than that measured in many headwater streams in other parts of the world. The volume loading of debris measured from low level aerial photographs was only 4.8% of the value estimated by the line-intersect technique. The line-intersect estimates were biased due to non-random orientation of debris in the stream (causing estimated errors of +8% for volume loading and +16% for surface area loading). It is recommended that to avoid this problem, when using the line-intersect transect technique in lowland rivers, each line should comprise at least two obliquely-angled transects across the channel. The mean item of debris (0.1 m in diameter) had a trunk basal diameter of 0.45 m, a length of 7.4 m, and volume of 0.7 m3. The riparian trees and the in-channel debris were of similar dimensions. The debris tended to be close to the bed and banks and was oriented downstream by the flow at a median angle of 27°. Because of this orientation, most debris had a small projected cross-sectional area, with the median value being only 1 m2. Thus, the blockage ratio (proportion of projected area of debris to channel cross-sectional area) was also low, ranging from 0.0002 to 0.1, with a median value of 0.004. The average item of debris, which occupied only 0.4% of the cross-section, would have minimal influence on banktop flow hydraulics, but the largest items, which occupied around 10%, could be significant. Judicious re-introduction of debris into previously cleared rivers is unlikely to result in a large loss of conveyance, or a detectable increase in flooding frequency.  相似文献   
84.
Exclusion has been applied as a main measure for re-vegetation all over the world.This paper,by comparing the results of year-round exclusion,seasonal exclusion,and non-exclusion,quantified the vegetation variations under three different exclusion measures and their correlation to soil factors.The analysis results for community species component and plant diversity using multi-response permutation procedures (MRPPs)showed that exclusion did change the species component and increase plant diversity remarkably,while the period of exclusion had no significant influence on these two community features.The indicator species analysis and calculation of similarity indices indicated that community for year-round exclusion were becoming xerophytization and unpalatability,and showed highly spatial heterogeneity of plant species distribution,whereas community for seasonal exclusion was under stable non-equilibrium condition.Detrended correspondence analysis (DCA)and detrend canonical correspondence analysis (DCCA)results of relationship between plant species and soil variables demonstrated that soil moisture was a controlling factor for plant species component,microbiotic soil crust cover,soil organic matter,and soil bulk density had significant effects on soil moisture,among which microbiotic soil crust was a leading factor owing to its limitation to rainfall infiltration on the one hand,and its constraints to entrance of herbaceous seeds into soil or to germination of soil seeds on the other hand.As a result of long-term removal of animal grazing,crust kept intact in year-round exclusion community,which was a main reason of community xerophytization.It was also obvious from ordination results that some important environmental factors,such as tempo-spatial change of rainfall and corresponding tempo-spatial change of soil moisture,were neglected during direct gradient analysis.In addition,biodiversity was close related to soil nutrients as well as to soil moisture condition (soil water content and crust cover),and it had positive relation to available N,and negative relation to available P.Higher soil N had advantage to non-leguminous plants growth on nutrition-poor sand land definitely.The impact of P to community component was unclear and should be studied from plant physiology.Further researches on nonequilibrium theory in semi-arid rangeland will provide a scientific and flexible animal development paradigm for being implementing livestock fen-raising and grazing-forbidden policies in China.  相似文献   
85.
Vegetation maps are critical biodiversity planning instruments, but the classification of vegetation for mapping can be strongly biased by survey design. Standardization of survey design across different vegetation types is therefore increasingly recommended for vegetation mapping programs. However, some vegetation types have complex small‐scale vegetation patterns that are important in characterizing these vegetation types, and standard designs will often not capture these patterns. The objective of this paper was to investigate the magnitude of potential map bias that results from survey design standardization and recommend approaches to deal with this bias. We surveyed upland swamps of the Greater Blue Mountains World Heritage Area Australia using two contrasting survey designs, including the standard 400 m2 single quadrat design recommended and used by authorities. We then derived a classification for these swamps and tested the effect of survey design on this classification, species richness and the type of species detected (obligate or facultative swamp species). Species richness and species type were not significantly different among survey techniques. However, more than 40% of swamps clustered differently among survey designs. Thus, one of the 10 derived communities (which is floristically consistent with a previously mapped endangered community) was indistinct, and some individual swamps misclassified using the standard survey design. An effect of landscape position on swamp floristic patterns and a significant trend for high similarity scores among swamps surveyed with multiple small quadrats compared to the standard survey design was also determined. Australian upland swamps are classified at the global scale as shrub‐dominated wetlands, and complex floristic patterns have been recorded in shrub‐dominated wetlands in both northern and southern hemispheres. We therefore advocate either multiple survey designs or different survey standards for upland swamp communities and other vegetation types that have complex floristic patterns at small scales.  相似文献   
86.
Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) provide a discussion of the criteria expected for the best approach to validation of mapping programs and uses Hunter (Ecological Management & Restoration 17 , 2016, 40) to highlight issues involved. While we support the general principles outlined, we note that the review does not apply the same standards to Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011), the original document critiqued by Hunter (Ecological Management & Restoration 17 , 2016, 40). The Hunter (Ecological Management & Restoration 17 , 2016, 40) validation was based on a larger sample size, greater sampling within mapping units and greater representation of landscapes than Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011). Survey and validation sites being placed along public roads and lands are common to both the general Office of Environment and Heritage (OEH) and Hunter (Ecological Management & Restoration 17 , 2016, 40) validation methodologies. Thus, the criticisms of Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) of the Hunter (Ecological Management & Restoration 17 , 2016, 40) approach apply equally, if not more, to Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011). We outline in the article how the Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) critique was selective and in some cases incorrect in its analysis of issues presented in Hunter (Ecological Management & Restoration 17 , 2016, 40) and did not apply the same criteria to their own work. We conclude by discussing future directions for validating and mapping vegetation communities.  相似文献   
87.
A system was developed to provide the parasitic wasp Ephedrus persicae Froggatt (Hymenoptera: Braconidae: Aphidiinae), which attacks the rosy apple aphid Dysaphis plantaginea (Passerini) (Homoptera: Aphididae), with the alternative host Dysaphis sorbi Kaltenbach (Homoptera: Aphididae) in apple orchards. Rowan trees (Sorbus aucuparia L.) arranged along the side of an unsprayed orchard were artificially infested in late February 2002 with eggs of D. sorbi. Colonies of D. sorbi successfully developed from the introduced eggs and persisted on several trees until the end of June. The only primary parasitoid species emerging from a sample of mummified aphids collected in spring from the infested rowan trees was the braconid wasp species E. persicae. In a host-switching experiment, nymphs of D. plantaginea proved suitable for female parasitoids originating from mummified D. sorbi. A series of mummies collected from the rowan trees in early summer contained diapausing parasitoids and hyperparasitoids that only hatched in April of the following spring. These observations suggest the possibility of establishing a local population of E. persicae in apple orchards, so that D. plantaginea can be readily attacked by diapause-emerging parasitoids in early spring.  相似文献   
88.
Abstract. We present a remote sensing based vegetation mapping technique well suited to a heterogeneous, semi‐arid environment. 10 structural vegetation classes were identified and described on the ground. Using Landsat‐TM from two different seasons and a combination of three conventional classification techniques (including a multi‐temporal classification) we were unsuccessful in delineating all of the desired vegetation classes. We then employed a simple tex‐tural classification index, known as the Moving Standard Deviation Index (MSDI), that has been used to map degradation status. MSDI measures spatial variations in the landscape and is calculated by passing a 3 × 3 standard deviation filter across the Landsat‐TM red band. High MSDI values are associated with degraded or disturbed rangelands whilst low MSDI values are associated with undisturbed rangeland. A combination of two conventional multi‐spectral techniques and MSDI were used to produce a final vegetation classification at an accuracy of 84 %. MSDI successfully discriminated between two contrasting vegetation types of identical spectral properties and significantly strengthened the accuracy of the classification. We recommend the use of a tex‐tural index such as MSDI to supplement conventional vegetation classification techniques in heterogeneous, semi‐arid or arid environments.  相似文献   
89.
In the Zoom Erlebniswelt Gelsenkirchen the third and last biogeographical area dedicated to the Asian fauna was opened in March 2010 covering a total area of five hectares. In May 2013 a new enclosure for tigers was added. The emphasis of the Asia area lies on a 4700 m2 tropical hall with mammals and birds, and Asian gastronomic facilities as well. Included is a mixed species exhibit for orangutans (Pongo abelii), northern plains grey langurs (Semnopithecus entellus) and Asian small clawed otters (Aonyx cinerea). Along a 1.3 km outside path enclosures for some species of colder climates were built, too. The transformation of the former Ruhr Zoo Gelsenkirchen to the modern ZOOM Erlebniswelt herewith is brought to a close.  相似文献   
90.
The minimum sampling areas (MSAs) for the shrub communities in the arid valley in the upper reach of the Minjiang River, China, were studied by fitting community species-area relationships using 3 types of equations. The MSAs were determined at the proportional factor (ρ) 0.6, 0.7, 0.8 and 0.9. The proportional factors represent the proportion of the number of species within a sampling plot in the total number of species. The MSAs of the shrub communities at different elevations and on different slope faces for ρ = 0.6, 0.7 and 0.8 were all around 100 m2. Hence, the MSAs could be set to be 100 m2 (10 m × 10 m) at 60%–80% precision levels. For ρ = 0.9, that is, for a 90% precision level, the MSAs were less than 200 m2 (10 m × 20 m). The MSAs and species richness increased gradually with the rising elevation. At the elevation below 2000 m, the MSAs and species richness on the north-facing slope were larger than those on the south-facing slope. However, at the elevation around 2200 m, there was no difference amongst different facing slopes. For the shrub communities in the arid valley in the upper reach of the Minjiang River, the species-area curves by fitting the first two equations are better than that by fitting the third equation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号