首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25858篇
  免费   2501篇
  国内免费   4440篇
  32799篇
  2024年   105篇
  2023年   470篇
  2022年   553篇
  2021年   736篇
  2020年   941篇
  2019年   1036篇
  2018年   1000篇
  2017年   961篇
  2016年   1016篇
  2015年   937篇
  2014年   1054篇
  2013年   1391篇
  2012年   971篇
  2011年   1059篇
  2010年   850篇
  2009年   1016篇
  2008年   1116篇
  2007年   1167篇
  2006年   1125篇
  2005年   1181篇
  2004年   1228篇
  2003年   1181篇
  2002年   942篇
  2001年   924篇
  2000年   710篇
  1999年   797篇
  1998年   668篇
  1997年   586篇
  1996年   669篇
  1995年   654篇
  1994年   611篇
  1993年   599篇
  1992年   566篇
  1991年   470篇
  1990年   459篇
  1989年   425篇
  1988年   449篇
  1987年   303篇
  1986年   294篇
  1985年   283篇
  1984年   256篇
  1983年   114篇
  1982年   190篇
  1981年   145篇
  1980年   144篇
  1979年   97篇
  1978年   86篇
  1977年   79篇
  1976年   65篇
  1974年   29篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
191.
Spores from four Frankia strains were isolated and purified to homogeneity. The purified spores were biochemically and physiologically characterized and compared to vegetative cells. Frankia spores exhibited low levels of endogenous respiration that were at least ten-fold lower than the endogenous respiration rate of vegetative cells. The macromolecular content of purified spores and vegetative cells differed. One striking difference among the Frankia spores was their total DNA content. From DAPI staining experiments, only 9% of strain ACN1AG spore population contained DNA. With strains DC12 and EuI1c, 92% and 67% of their spore population contained DNA. The efficiency of spore germination was correlated to the percentage of the spore population containing DNA. These results suggest that the majority of strain ACN1AG spores were immature or nonviable. The presence of a solidifying agent inhibited the initial stages of spore germination, but had no effect once the process had been initiated. The optimal incubation temperature for spore germination was 25°C and 30°C for strains DC12 and EuI1c, respectively. A mild heat shock increased the efficiency of spore germination, while root extracts also stimulated spore germination. These results suggest that strains DC12 and EuI1c may be suitable strains for further germination and genetic studies.  相似文献   
192.
Monitoring successional advancement is a complex field involving a constant search for applied ecological indicators which facilitate monitoring of secondary forests for both active and passive restoration. In this study, the authors investigate the successional advancement of floristics and tree structure within Araucaria Forest (AF) fragments under passive restoration in a context where exotic tree plantations (mainly Pinus L. genus) dominate the landscape. The ecological indicators used were floristic dissimilarity (β‐diversity inferences), indicator species, ecological groups of species, basal area, and species abundance distribution (SAD) models (α‐diversity inferences). A total of 182 tree species belonging to 91 genera and 43 botanical families were identified. A high β diversity was verified for which each site has indicator species (for the locations CD—Dicksonia sellowiana; CO—Cryptocarya aschersoniana; and PG—Pinus taeda), where pioneer species contributed to much of the abundance. Different SAD models are useful for describing passive restoration sites in exotic tree plantation landscapes, namely Lognormal, Mandelbrot, and Zipf. SAD models together with basal area, taxonomic group (e.g. Myrtaceae assemblage), and tree abundance in ecological groups are strategic ecological indicators for monitoring successional advancement in AF.  相似文献   
193.
We tested the hypothesis that P was the nutrient limiting net primary production of a nativeMetrosideros polymorpha forest on a highly weathered montane tropical soil in Hawaii. A factorial experiment used all combinations of three fertilizer treatments: nitrogen (N), phosphorus (P) and a mix of other essential nutrients (OE), consisting primarily of mineral derived cations and excluding N and P. P addition, but not N or OE, increased leaf area index within 12 months, foliar P concentration measured at 18 months, and stem diameter increment within 18 months. Stem growth at 18 months was even greater when trees fertilized with P also received the OE treatment. N and P additions increased leaf litterfall and N and P in combination further increased litterfall. The sequence of responses suggests that increased available P promoted an increase in photosynthetic area which led to increased wood production. P was the essential element most limiting to primary production on old volcanic soil in contrast to the N limitation found on young volcanic soils.  相似文献   
194.
Aims Natural and anthropogenic changes in forests can have important influences on transpiration and water production. Understanding the effects of increasing disturbances, due for example to climate change and forest harvesting, requires detailed information on how forest density and structural attributes relate to transpiration. Mean annual transpiration of eucalypt forest communities is often strongly correlated with total cross-sectional sapwood area. Our aim was to test an efficient method for estimating sapwood area at 1.3 m height (SA 1.3) in a large number of trees to understand the spatial heterogeneity of tree and stand sapwood area within and between forest communities, and develop allometric relationships that predict SA 1.3 with forest inventory data. We also apply tree competition models to determine the degree to which the relationship between SA 1.3 and tree basal area at 1.3 m height (BA 1.3) is influenced by competition.Methods We visited 25 recently harvested southeastern Australian forest sites consisting of 1379 trees and 5 Eucalyptus species to evaluate a new efficient data collection method for estimating SA 1.3 with tree taper and stump dimensions data using mixed effects models. The locations of 784 stumps within one 5-ha site were accurately mapped using an unmanned aerial vehicle (UAV), and four distance-dependent tree competition models were applied across the site to explain within-stand variation in the ratio of SA 1.3 to BA 1.3. Data from 24 additional sites, consisting of ten 15 m radial plots per site, were used to analyse within-site variation in R Ha (the ratio of stand sapwood area SA Ha to stand basal area BA Ha). The radial plots were merged within each site to evaluate between-site variations in R Ha across the landscape. For predicting SA Ha with forest inventory data, we computed the relationship between SA Ha and a new index of total stem perimeter per hectare, defined as ? B A H a N T, where N T is tree stocking density.Important findings Our 1379 measured stems represent the most comprehensive measure of sapwood area, surpassing the 757 measured stems in native eucalypt forests published in literature. The species-specific R Ha varied considerably across sites and therefore extrapolating SA Ha with spatially distributed BA Ha maps and a generalized R Ha would introduce local uncertainty. We found that the species-specific stem perimeter index was more effective at capturing variability in SA Ha across the landscape using forest composition, structure and density data (R 2 : 0.72–0.77). The strong correlation between tree SA 1.3 and BA 1.3 improved slightly using tree competition models (R 2 increased from 0.86 to 0.88). Relating SA Ha to routinely measured forest inventory attributes within permanent plots and Light Detection and Ranging (LiDAR) data may provide opportunities to map forest water use in time and space across large areas disturbed by wildfire and logging.  相似文献   
195.
Changes in growth, physiological and biochemical characteristics under salt stress with or without La3+ treatment in Saussurea involucrata Kar. et Kir. were investigated. The results showed that La3+ relieved the plant growth inhibition, improved the leaf water potential and water content, increased the soluble protein and the proline contents and decreased malondialdehyde content under salt stress. Further, addition of La3+ significantly increased the activities of superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase, decreased the photosynthetic pigment decomposition and increased the ratio of total chlorophyll to carotenoids under salt stress.  相似文献   
196.
Here, we describe the characteristics of a Brassica napus male sterile mutant 7365A with loss of the BnMs3 gene, which exhibits abnormal enlargement of the tapetal cells during meiosis. Later in development, the absence of the BnMs3 gene in the mutant results in a loss of the secretory function of the tapetum, as suggested by abortive callose dissolution and retarded tapetal degradation. The BnaC.Tic40 gene (equivalent to BnMs3) was isolated by a map-based cloning approach and was confirmed by genetic complementation. Sequence analyses suggested that BnaC.Tic40 originated from BolC.Tic40 on the Brassica oleracea linkage group C9, whereas its allele Bnms3 was derived from BraA.Tic40 on the Brassica rapa linkage group A10. The BnaC.Tic40 gene is highly expressed in the tapetum and encodes a putative plastid inner envelope membrane translocon, Tic40, which is localized into the chloroplast. Transmission electron microscopy (TEM) and lipid staining analyses suggested that BnaC.Tic40 is a key factor in controlling lipid accumulation in the tapetal plastids. These data indicate that BnaC.Tic40 participates in specific protein translocation across the inner envelope membrane in the tapetal plastid, which is required for tapetal development and function.  相似文献   
197.
In this report we investigated, within a group of closely related single domain camelid antibodies (VHHs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast‐acting toxin and biothreat agent. The V1C7‐like VHHs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin‐neutralizing activities. Using the X‐ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta‐based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1R29G mutant was largely devoid of toxin‐neutralizing activity (TNA). However, the TNA of the V1C7G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen‐deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function.  相似文献   
198.
The Energy Independence and Security Act (EISA) of 2007 mandates US production of 136 billion L of biofuel by 2022. This target implies an appropriation of regional primary production for dedicated feedstocks at scales that may dramatically affect water supply, exacerbate existing water quality challenges, and force undesirable environmental resource trade offs. Using a comparative life cycle approach, we assess energy balances and water resource implications for four dedicated ethanol feedstocks – corn, sugarcane, sweet sorghum, and southern pine – in two southeastern states, Florida and Georgia, which are a presumed epicenter for future biofuel production. Net energy benefit ratios for ethanol and coproducts range were 1.26 for corn, 1.94 for sweet sorghum, 2.51 for sugarcane, and 2.97 for southern pine. Corn also has high nitrogen (N) and water demand (11.2 kg GJnet?1 and 188 m3 GJnet?1, respectively) compared with other feedstocks, making it a poor choice for regional ethanol production. Southern pine, in contrast, has relatively low N demand (0.4 kg GJnet?1) and negligible irrigation needs. However, it has comparatively low gross productivity, which results in large land area per unit ethanol production (208 m2 GJnet?1), and, by association, substantial indirect and incremental water use (51 m3 GJnet?1). Ultimately, all four feedstocks require substantial land (10.1, 3.1, 2.5, and 6.1 million ha for corn, sugarcane, sweet sorghum, and pine, respectively), annual N fertilization (3230, 574, 396, 109 million kg N) and annual total water (54 400, 20 840, 8840, and 14 970 million m3) resources when scaled up to meet EISA renewable fuel standards production goals. This production would, in turn, offset only 17.5% of regional gasoline consumption on a gross basis, and substantially less when evaluated on a net basis. Utilization of existing waste biomass sources may ameliorate these effects, but does not obviate the need for dedicated primary feedstock production. Careful scrutiny of environmental trade‐offs is necessary before embracing aggressive ethanol production mandates.  相似文献   
199.
200.
Eighteen strains of xylariaceous fungi have been screened for higher activities of cellulolytic enzymes,Trichoderma reesei QM 9414 was also examined for comparison. Strains ofXylaria anisopleura andX. regalis had higher endocellulase (CMCase) and exocellulase (Avicelase) activities after 2 weeks' incubation.Hypoxylon stygium produced the highest activity of -glucosidase 3 days after inoculation. The optimum pH for these cellulolytic enzymes was approx. 5.0 and the optimum temperatures ranged from 37 to 50°C. A mixed culture process usingT. reesei QM 9414 andH. stygium was developed to obtain enhanced synthesis of cellulase. -Glucosidase activities in the mixed culture increased within 48h whenH. stygium was introduced after 24h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号