首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3905篇
  免费   583篇
  国内免费   363篇
  2024年   17篇
  2023年   115篇
  2022年   109篇
  2021年   206篇
  2020年   205篇
  2019年   317篇
  2018年   290篇
  2017年   165篇
  2016年   161篇
  2015年   186篇
  2014年   254篇
  2013年   232篇
  2012年   205篇
  2011年   197篇
  2010年   137篇
  2009年   226篇
  2008年   189篇
  2007年   197篇
  2006年   236篇
  2005年   176篇
  2004年   143篇
  2003年   118篇
  2002年   108篇
  2001年   114篇
  2000年   72篇
  1999年   89篇
  1998年   70篇
  1997年   64篇
  1996年   43篇
  1995年   42篇
  1994年   30篇
  1993年   19篇
  1992年   22篇
  1991年   20篇
  1990年   9篇
  1989年   13篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有4851条查询结果,搜索用时 218 毫秒
41.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
42.
43.
44.
该文选取浙江省古田山亚热带常绿阔叶林72种木本植物,探究气候因素、系统发育关系和功能性状对亚热带常绿阔叶林叶衰老物候的影响。结果表明,叶变色期在9—12月,落叶期在10—12月。每月落叶物种数与月均温、月均降水量和月均日照时数没有显著相关性,每月叶变色物种数与月均温和月均日照时数呈弱相关;落叶性对叶变色期和落叶期具有显著影响;植物间系统发育关系对叶变色期和落叶期没有显著影响。因此,生物和非生物因子都会影响常绿阔叶树种的叶衰老,这对于提高秋季物候预测模型具有重要价值。  相似文献   
45.
为了解寄生植物叶片功能性状的差异及其影响因素,研究了西双版纳地区寄主植物对3种桑寄生植物叶片功能性状的影响,并分析了桑寄生植物与寄主植物叶片功能性状的相关性。结果表明,不同寄主植物的相同寄生植物叶片功能性状存在显著差异,来自7种寄主植物的五蕊寄生(Dendrophthoe pentandra)的叶片含水量(61.2%~70.1%)、氮含量(9.6~16.0 g/kg)、碳氮比(30.8~48.5)以及缩合单宁含量(3.3%~11.0%)等性状的差异较大;从4种寄主植物上获取的澜沧江寄生(Scurrula chingii var.yunnanensis)的叶片含水量(60.0%~71.7%)、碳含量(431.3~502.3 g/kg)和缩合单宁含量(3.8%~9.9%)等性状也呈现较大种间差异,而在2种寄主植物上的离瓣寄生(Helixanthera parasitica)的叶片功能性状没有显著差异。桑寄生植物与寄主植物的叶片含水量、总碳含量、总氮含量、碳氮比和缩合单宁含量呈显著的正相关。寄主植物作为桑寄生植物营养物质的主要来源,会影响桑寄生植物叶片的相应功能性状。桑寄生植物能从寄主植物获...  相似文献   
46.
Accurate retention time (RT) prediction is important for spectral library-based analysis in data-independent acquisition mass spectrometry-based proteomics. The deep learning approach has demonstrated superior performance over traditional machine learning methods for this purpose. The transformer architecture is a recent development in deep learning that delivers state-of-the-art performance in many fields such as natural language processing, computer vision, and biology. We assess the performance of the transformer architecture for RT prediction using datasets from five deep learning models Prosit, DeepDIA, AutoRT, DeepPhospho, and AlphaPeptDeep. The experimental results on holdout datasets and independent datasets exhibit state-of-the-art performance of the transformer architecture. The software and evaluation datasets are publicly available for future development in the field.  相似文献   
47.
48.
Most previous studies of evolutionary modification of form in plants have focused primarily on individual organs or flowers. Few have investigated the role of evolutionary changes in timing or position at the level of whole plant ontogeny. This study compares ontogenies of the primary shoots of two subspecies of Cucurbita argyrosperma, one a cultivar and the other its wild progenitor. Differences in flowering times between these subspecies suggested that the cultivar may have evolved from the wild subspecies via heterochronic processes leading to paedomorphosis. Analyses showed that both subspecies are similar in vegetative architecture and rates of leaf production. Earlier flowering in the cultivar, both in terms of position and absolute time, appears to have arisen through progenesis. Initial observations of leaf blade morphology led to the hypothesis that paedomorphosis and gigantism also may have been involved in the evolution of leaf blade shape in the cultivar: all leaves of the cultivar are larger and visually similar in shape to early leaves of the wild subspecies. However, quantitative analysis revealed that leaves of the cultivar are neither geometrically, nor solely allometrically larger versions of early leaves of the progenitor. Leaf shape in the cultivar exhibits novel features as well as effects of allometry shared with the progenitor, hence a simple hypothesis of paedomorphic evolution of leaf shape is not supported.  相似文献   
49.
Morphologically variable F2 genotypes derived from hybridization of coastal and inland ecotypes of the annual plant Diodia teres were used to identify selection on morphological traits in the natural habitat of each ecotype. These ecotypes occur in very different habitats, and have evolved pronounced morphological differentiation. Selection analysis can suggest whether present patterns of selection can explain morphological differences between ecotypes. F2 genotypes were characterized morphologically, clonally replicated, and transplanted into the habitat of each ecotype. Selection was measured on six morphological traits. Directional and stabilizing selection occurred on many traits; direction and strength of selection varied sharply at different stages of growth, as revealed by a path-analysis approach that divided selection into a set of independent components. Directional selection favored traits of the native population at the coastal habitat, but less so at the inland habitat. Selection was of sufficient strength to create the observed morphological differences between ecotypes in 25–100 generations, given constant selection and sufficient genetic variation. In effects on fitness, most traits were neither independent nor consistently interactive with other traits. Rather, many traits entered into strong but evanescent interactions affecting particular components of fitness. Observed interactions did not support the hypothesis that the morphology of each ecotype was functionally integrated to a high degree.  相似文献   
50.
Both the population and coevolutionary dynamics of hereditary male-lethal endosymbionts, found in a wide range of insect species, depend on host fitness and endosymbiont transmission rates. This paper reports on fitness effects and transmission rates in three lines of Drosophila willistoni infected with either male-lethal spiroplasmas or a spontaneous nonmale-lethal mutant. Overall fitness measures were reduced or unaffected by the infection; however, some infected females produced more offspring in early broods. Maternal transmission rates were high, but imperfect, and varied with a female's age, host line, and spiroplasma type. No evidence for paternal or horizontal transmission was found. If an altered temporal pattern of reproduction is not a factor in countering the loss of spiroplasma hosts through imperfect maternal transmission, persistence of this endoparasitism remains unexplained. Tolerance of the infection and ability to transmit bacteria varied with both host and spiroplasma line. Analysis of the interaction between the spontaneous nonmale-lethal mutant and its host suggests this symbiosis has undergone coevolution under laboratory culture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号