全文获取类型
收费全文 | 69篇 |
免费 | 11篇 |
国内免费 | 1篇 |
专业分类
81篇 |
出版年
2023年 | 3篇 |
2022年 | 1篇 |
2020年 | 1篇 |
2019年 | 4篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 2篇 |
2014年 | 6篇 |
2013年 | 2篇 |
2012年 | 6篇 |
2011年 | 4篇 |
2010年 | 3篇 |
2008年 | 3篇 |
2005年 | 3篇 |
2004年 | 6篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1981年 | 1篇 |
排序方式: 共有81条查询结果,搜索用时 15 毫秒
41.
Bioinsecticide and leaf litter combination increases oviposition and reduces adult recruitment to create an effective ovitrap for Culex mosquitoes 下载免费PDF全文
Mosquito egg traps, aquatic habitats baited with oviposition attractant and insecticide, are important tools for surveillance and control efforts in integrated vector management programs. The bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) is increasingly used as an environmentally friendly alternative to chemical insecticides and the combination of Bti with a simple oviposition attractant like leaf litter to create an effective egg trap seems appealing. However, previous research suggests that Bti may itself alter oviposition, and that leaf litter may dramatically reduce Bti toxicity. Here we present results from field experiment designed to link the effects of litter and Bti on mosquito oviposition habitat selection and post‐colonization survival to production of adult mosquitoes. Tripling litter increased Culex spp. oviposition nearly nine‐fold, while Bti had no effect on oviposition. Neither factor altered egg survival, thus larval abundance reflected the effects of litter on oviposition. Both Bti and litter reduced larval survival by ~60%. We found no evidence that increased litter reduced Bti toxicity. Adult production was dependent upon both litter and Bti. In the absence of Bti, effects of litter on oviposition translated into three‐fold more adults. However, in the presence of Bti, initial increases in oviposition were erased by the combined negative effects of Bti and litter on post‐colonization survival. Thus, our study provides field evidence that combined litter and Bti application creates an effective ovitrap. This combined treatment had the highest oviposition and the lowest survival, and thus removed the greatest number of mosquitoes from the landscape. 相似文献
42.
Liangbiao Zheng 《Archives of insect biochemistry and physiology》1997,34(1):1-18
The success of vector borne disease transmission depends on the interplay between mosquito and pathogen. Understanding the genetic and molecular basis of refractoriness of mosquito may lead to novel disease control mechanisms. To complete the life cycle within the vector mosquito, a pathogen needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium, or salivary glands. The immune response of the mosquito has to be neutralized or avoided. Genomic approaches are being employed to identify the genetic and molecular differences between selected strains of refractory and susceptible mosquitoes. Detailed molecular genetic maps based on restriction fragment length polymorphism (RFLP) and microsatellite (or simple sequence repeat) markers have been developed for two important vectors, Aedes aegypti and Anopheles gambiae, respectively. Recent success in genetic localization of quantitative trait loci controlling refractoriness/susceptibility of mosquitoes for Plasmodium and Brugian microfilariae provides a framework for further molecular characterization. Libraries of large genomic DNA inserts in bacterial or yeast artificial chromosomes (BACs and YACs) will facilitate physical mapping of the genetic loci controlling refractoriness. Identification of candidate refractory genes, and the cloning of other molecular markers for the mosquito immunity, provides tools for fruitful analysis of mosquito-parasite interactions. © 1997 Wiley-Liss, Inc. 相似文献
43.
Pmela dos Santos Andrade Paulo Roberto Urbinatti Ronan da Rocha Coelho Rosa Maria Marques de S Almeida Sabrina Santana Ribeiro Tamara Nunes de Lima‐Camara 《Journal of vector ecology》2019,44(2):233-240
The objective of this study was to assess the parity, presence of blood in the stomach, and the gonotrophic discordance of females of Aedes aegypti and Aedes albopictus captured in two areas of the city of São Paulo. The captures were undertaken monthly, by aspiration, in the period from January, 2015 to August, 2017. All the females of the two species had their midguts and ovaries dissected to determine the presence of blood and the parity/stage of maturation. With regard to parity, 27% and 34% of the females of Ae. aegypti and Ae. albopictus, respectively, were parous or were in advanced stages of the development of their ovaries (33% and 27%, respectively). The larger part of the females of Ae. aegypti and Ae. albopictus contained blood in their stomachs (77% and 60%, respectively), beyond which 36% and 27% of the females of Ae. aegypti and Ae. albopictus, respectively, were in gonotrophic discordance. Our results indicate favorable conditions in the study areas because of the presence of parous females. Moreover, this frequent and multiple contact of Ae. aegypti and Ae. albopictus females with vertebrate hosts, such as humans, increases the possibility of transmitting the viruses they may be carrying. 相似文献
44.
Potential transmission of West Nile virus in the British Isles: an ecological review of candidate mosquito bridge vectors 总被引:2,自引:0,他引:2
West Nile virus (WNV) transmitted by mosquitoes (Diptera: Culicidae) infects various vertebrates, being pathogenic for birds, horses and humans. After its discovery in tropical Africa, sporadic outbreaks of WNV occurred during recent decades in Eurasia, but not the British Isles. WNV reached New York in 1999 and spread to California by 2003, causing widespread outbreaks of West Nile encephalitis across North America, transmitted by many species of mosquitoes, mainly Culex spp. The periodic reappearance of WNV in parts of continental Europe (from southern France to Romania) gives rise to concern over the possibility of WNV invading the British Isles. The British Isles have about 30 endemic mosquito species, several with seasonal abundance and other eco-behavioural characteristics predisposing them to serve as potential WNV bridge vectors from birds to humans. These include: the predominantly ornithophilic Culex pipiens L. and its anthropophilic biotype molestus Forskal; tree-hole adapted Anopheles plumbeus Stephens; saltmarsh-adapted Ochlerotatus caspius Pallas, Oc. detritus Haliday and Oc. dorsalis (Meigen); Coquillettidia richiardii Ficalbi, Culiseta annulata Schrank and Cs. morsitans (Theobald) from vegetated freshwater pools; Aedes cinereus Meigen, Oc. cantans Meigen and Oc. punctor Kirby from seasonal woodland pools. Those underlined have been found carrying WNV in other countries (12 species), including the rarer British species Aedes vexans (Meigen), Culex europaeus Ramos et al., Cx. modestus Ficalbi and Oc. sticticus (Meigen) as well as the Anopheles maculipennis Meigen complex (mainly An. atroparvus van Thiel and An. messeae Falleroni in Britain). Those implicated as key vectors of WNV in Europe are printed bold (four species). So far there is no proof of any arbovirus transmission by mosquitoes in the British Isles, although antibodies to Sindbis, Tahyna, Usutu and West Nile viruses have been detected in British birds. Neighbouring European countries have enzootic WNV and human infections transmitted by mosquito species that are present in the British Isles. However, except for localized urban infestations of Cx. pipiens biotype molestus that can be readily eliminated, there appear to be few situations in the British Isles where humans and livestock are exposed to sustained risks of exposure to potential WNV vectors. Monitoring of mosquitoes and arbovirus surveillance are required to guard the British Isles against WNV outbreaks and introduction of more anthropophilic mosquitoes such as Stegomyia albopicta (Skuse) and Ochlerotatus japonicus (Theobald) that have recently invaded Europe, since they transmit arboviruses elsewhere. 相似文献
45.
BRADLEY A. MULLENS WALTER J. TABACHNICK FREDERICK R. HOLBROOK LEE H. THOMPSON 《Medical and veterinary entomology》1995,9(1):71-76
Abstract. Culicoides variipennis sonorensis females were fed bluetongue virus serotype 11 mixed in sheep blood and were held at constant temperatures of 32, 27, 21 and 15o C. Virogenesis, as measured by enzyme-linked immunosorbent assay (ELISA), proceeded significantly faster at higher temperatures. Based on ELISA absorbance ≥0.2, some flies first were categorized as infected after 1 day, 2 days and 4 days at 32, 27 and 21o C, respectively. Peak levels of virus antigen were seen after 5–7, 7–13 and 18–22 days for flies held at 32, 27 and 21o C, respectively. There was no significant virus replication in flies held at 15o C for 22 days, but latent virus replicated and was detected easily (44% infection) 4–10 days after these flies were transferred to 27o C. The implications for temperature effects on bluetongue epizootiology are discussed. 相似文献
46.
Glycoproteins expressed on the surface of midgut (MG) epithelium and the peritrophic matrix (PM) of vector mosquitoes (Diptera: Culicidae) are candidate molecules for interacting with pathogens. Antisera produced against Anopheles tessellatus Theobald female MG lectin-binding proteins (concanavalin A and wheat germ agglutinin) were used in Western blots to investigate MG/PM antigenic relationships between adult and larval An. tessellatus and with the MG glycoproteins of other vector mosquitoes: Anopheles culicifacies Giles, An. subpictus Grassi, An. varuna Iyengar, Aedes aegypti (L.) and Culex quinquefasciatus Say. Within An. tessellatus, strong antigenic cross-reactions were observed between adult and larval MG proteins, and between adult MG and PM proteins. Anopheles tessellatus adult MG antisera reacted with MG antigens from adult females of the other five mosquito species, with interspecific contrasts of relative molecular mass (Mr) of nearly all reacting antigens, except the strong 36 kDa band shared by An. tessellatus and Cx. quinquefasciatus. Cross-reactivity within female An. tessellatus may be due to the MG containing precursors to the PM glycoproteins and/or some common fully processed proteins, or perhaps carbohydrate epitopes that are shared between related or unrelated MG and PM glycoproteins. Cross-reactions between adult MG proteins from different mosquito species, mostly with differential Mr, reflect the presence of homologous proteins that may be relevant to specific vector competence. 相似文献
47.
48.
West Nile virus (WNV) could be introduced into Germany via migratory birds originating from Africa or southern Europe and subsequently transmitted to indigenous birds, humans, or horses by mosquitoes. Neither the virus itself nor antibodies against WNV have yet to be found in mosquitoes and horses, whereas antibodies have been detected in migrating birds and in humans that were in close contact with birds. At present, the West Nile virus itself has yet to be detected in Germany. This investigation was conducted primarily in major bird breeding, resting, and roosting habitats (hotspots) in the Upper Rhine Valley. Adult mosquitoes were trapped using CO2‐baited Encephalitis Vector Surveillance (EVS)‐traps and were tested for WNV by the VecTest WNV Antigen Assay. In 2007 and 2008, a total of 11,073 host‐seeking adult female mosquitoes (13 species) were tested, and all tests were negative for WNV. Statistical calculations could be performed only where sufficient numbers of mosquitoes were trapped. For these sites, WNV infection among mosquitoes could be ruled out with 80% certainty. For the evaluation of the WNV situation in Germany, the results of this investigation are a further indication that the virus has not yet arrived. 相似文献
49.
Grégory L'Ambert Mathieu Gendrot Sébastien Briolant Agnès Nguyen Sylvain Pages Laurent Bosio Vincent Palomo Nicolas Gomez Nicolas Benoit Hélène Savini Bruno Pradines Guillaume André Durand Isabelle Leparc-Goffart Gilda Grard Albin Fontaine 《Molecular ecology resources》2023,23(2):410-423
Emerging and endemic mosquito-borne viruses can be difficult to detect and monitor because they often cause asymptomatic infections in human or vertebrate animals or cause nonspecific febrile illness with a short recovery waiting period. Some of these pathogens circulate into complex cryptic cycles involving several animal species as reservoir or amplifying hosts. Detection of cases in vertebrate hosts can be complemented by entomological surveillance, but this method is not adapted to low infection rates in mosquito populations that typically occur in low or nonendemic areas. We identified West Nile virus circulation in Camargue, a wetland area in South of France, using a cost-effective xenomonitoring method based on the molecular detection of virus in excreta from trapped mosquitoes. We also succeeded at identifying the mosquito species community on several sampling sites, together with the vertebrate hosts on which they fed prior to being captured using amplicon-based metabarcoding on mosquito excreta without processing any mosquitoes. Mosquito excreta-based virus surveillance can complement standard surveillance methods because it is cost-effective and does not require personnel with a strong background in entomology. This strategy can also be used to noninvasively explore the ecological network underlying arbovirus circulation. 相似文献
50.
First report of the oriental mosquito Aedes albopictus on the West African island of Bioko,Equatorial Guinea 总被引:2,自引:0,他引:2
The invasive oriental mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) was detected on Bioko Island for the first time in November 2001. It was found to be well established breeding in artificial containers at Planta, near Malabo, the capital of Equatorial Guinea. Associated species of mosquito larvae were Aedes aegypti (L.), Ae. africanus (Theobald), Culex near decens Theobald, Cx. duttoni Theobald, Cx. quinquefasciatus Say, Cx. tigripes De Grandpré & De Charmoy, Eretmapodites quinquevittatus Theobald and Mansonia africana (Theobald). This is the third tropical African country to be invaded by Ae. albopictus, which has recently spread to many parts of the Americas and Europe--with vector competence for dengue, yellow fever and other arboviruses. In the Afrotropical environment, it will be interesting to monitor the ecological balance and/or displacement between introduced Ae. albopictus and indigenous Ae. aegpyti (domestic, peri-domestic and sylvatic populations). 相似文献