首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3418篇
  免费   868篇
  国内免费   110篇
  2024年   35篇
  2023年   44篇
  2022年   42篇
  2021年   46篇
  2020年   296篇
  2019年   315篇
  2018年   302篇
  2017年   226篇
  2016年   207篇
  2015年   190篇
  2014年   169篇
  2013年   270篇
  2012年   128篇
  2011年   112篇
  2010年   79篇
  2009年   115篇
  2008年   102篇
  2007年   112篇
  2006年   137篇
  2005年   147篇
  2004年   124篇
  2003年   117篇
  2002年   118篇
  2001年   110篇
  2000年   82篇
  1999年   70篇
  1998年   69篇
  1997年   61篇
  1996年   62篇
  1995年   53篇
  1994年   67篇
  1993年   52篇
  1992年   44篇
  1991年   37篇
  1990年   36篇
  1989年   28篇
  1988年   30篇
  1987年   31篇
  1986年   16篇
  1985年   16篇
  1984年   14篇
  1983年   11篇
  1982年   22篇
  1981年   12篇
  1980年   20篇
  1979年   9篇
  1978年   2篇
  1977年   5篇
  1975年   1篇
  1973年   3篇
排序方式: 共有4396条查询结果,搜索用时 15 毫秒
91.
Avoidance reactions of chironomid larvae to contaminated sediment taken from a heavy metal impacted lake were studied. Heavy metal levels in the test sediment ranged from background of 0.6 parts per million (ppm) cadmium, 77 ppm zinc and 17 ppm chromium to a maximum of 1,029 ppm cadmium, 17,262 ppm zinc and 2,106 ppm chromium. A linear relationship was established between cadmium and zinc levels in the sediment and avoidance by chironomids.An approximate threshold avoidance of metals in the sediment was determined to be between 213–422 ppm cadmium, 4385–8330 ppm zinc and 799–1513 ppm chromium.Supported by NIH Training Grant Number 5T01-ES00071 from National Institute of Environmental Health Sciences and in part by an NSF (RANN) Grant Number GI-35106.Purdue University Agricultural Experiment Station, Jour. No. 6474.  相似文献   
92.
Supra-optimal levels of zinc in primary leaves of Phaseolus vulgaris increased the CO2 compensation point and inhibited net photosynthesis. Leaf morphology was modified: mesophyll intercellular area, stomatal slit length and interstomatal distance were reduced, but stomatal density increased. Internal and stomatal conductances to CO2 diffusion decreased. These changes are discussed in relation to the observed effects on leaf gas exchange and to the previously reported inhibition of different photosynthetic and photorespiratory enzymes.  相似文献   
93.
Rat bile and pancreatic fluid were examined for the presence of low molecular weight zinc complexes. Fluids were collected separately by cannulation, and zinc distribution in collected samples was analyzed by gel filtration on Sephadex G-50. Most of the zinc in bile was associated with low molecular weight zinc complexes; only a small amount of zinc was present in the high molecular weight fraction. In contrast, pancreatic secretions did not contain low molecular weight zinc complexes, but there were considerable amounts of zinc bound to high molecular weight compounds. The addition of zinc to bile resulted in an increased amount of zinc in the low molecular weight fraction, while the addition of zinc to pancreatic fluid resulted primarily in an increase in zinc bound to the high molecular weight components. Like pancreatic fluid, homogenates of pancreatic tissue had no low molecular weight zinc complex. In rats whose bile and pancreatic fluid were removed and not returned into the intestine, the amount of zinc bound to low molecular weight complexes in intestinal homogenates was reduced. This alteration of the molecular distribution of zinc in intestinal homogenates by removal of bile and pancreatic fluid suggests the potential importance of low molecular weight zinc complexes for zinc homeostasis.  相似文献   
94.
Previous work in our laboratory led to the isolation of a cadmium (Cd)-resistant variant (Cdr2C10) of the line CHO Chinese Hamster cell having a 10-fold greater resistance to the cytotoxic action of Cd2+ compared with the CHO cell. This resistance was attributed to an increased capacity of the Cd2+-resistant Cdr2C10 subline to induce synthesis of the Cd2+- and Zn2+-binding protein(s), metallothionein(s) (MT). Evidence that Cd2+ behaves as an analog of the essential trace metal, Zn2+, especially as an inducer of MT synthesis, suggested that the Cdr and CHO cell types could be employed to investigate cellular Zn2+ metabolism. In the present study, measurements were made to compare CHO and Cdr cell types for (a) growth as a function of the level of ZnCl2 added to the culture medium, (b) uptake and subcellular distribution of Zn2+, and (c) capacity to induce MT synthesis. The results of these measurements indicated that (a) both CHO and Cdr cell types grew normally (T d≊16–18 h) during exposures to Zn2+ at levels up to 100 μM added to the growth medium, but displayed abrupt growth inhibition at higher Zn2+ levels, (b) Cdr cells incorporate fourfold more Zn2+ during a 24-h exposure to the maximal subtoxic level of Zn2+ and (c) the CHO cell lacks the capacity to induce MT synethesis while the Cdr cell is proficient in this response during exposure to the maximal subtoxic Zn2+ level. These findings suggest that (a) the CHO and Cdr cell systems will be useful in further studies of cellular Zn2+ metabolism, especially in comparisons of Zn2+ metabolism in the presence and absence of induction of the Zn2+-sequestering MT and (b) a relationship exists between cellular capacity to induce MT synthesis and capacity for cellular Zn2+ uptake.  相似文献   
95.
The presence of superoxide dismutase in bovine and human milk was investigated by ultrafiltration, gel filtration, and isoelectric focusing. Conclusive evidence for the presence of this enzyme in both milks is presented. The molecular weight of the enzyme was estimated by gel filtration on Sephadex G-100 to be 30,000, which is consistent with reported values for the copper, zinc form of superoxide dismutase. In addition, enzyme activity was inhibited by cyanide, thus eliminating the possibility that the enzyme was present in the manganese form. Several isoenzymes were detected by isoelectric focusing in polyacrylamide gel, and the isoenzyme pattern in bovine milk was the same as that found for bovine plasma, suggesting that milk superoxide dismutase originates from plasma. It may be that the presence of copper, zinc superoxide dismutase in milk is important for the maintenance of its oxidative stability.  相似文献   
96.
A review of experimental studies of the effect of zinc nutrition on insulin metabolism is presented. In addition to a short introduction to the synthesis, secretion, and action of insulin, the effects of zinc deficiency—specifically on glucose tolerance, insulin secretion, insulin synthesis and storage, and on total insulin-like activity—are dealt with. The concentrations of zinc and chromium in serum, pancreas, and liver are compared to those of zinc-deficient animals and pair-fed controls. In contrast to pair-fed controls, zinc-deficient rats had unaltered proinsulin contents after glucose stimulation, but they showed a diminished glucose tolerance, lowered serum insulin content, and an elevated total insulin-like activity. The serum zinc concentration of the deficient animals was greatly reduced and did not change during glucose stimulation, whereas it rose in the case of the pair-fed controls. The serum chromium concentration increased in both groups in response to glucose stimulation. In the pancreas of the deficient animals, the zinc concentration was reduced 60% and it increased during the glucose tolerance test. In the liver there were no significant differences. The chromium concentrations were elevated in both the pancreas and liver of the zinc-deficient rats by 60 and 100%, respectively, and were not influenced by glucose injection. These studies show clearly that nutritional zinc deficiency influences insulin metabolism and action.  相似文献   
97.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   
98.
Summary Adult human prostatic epithelium was cultured in a defined medium consisting of RPMI 1640 supplemented with transferrin, insulin, epidermal growth factor, dexamethasone, and vitamin A. In the presence of insulin, stabilized with zinc, maximum epithelial multiplication was obtained at an insulin concentration of 0.03 to 0.1 U/ml, corresponding to a zinc concentration of 1.4×10−7 M. At higher insulin concentrations, growth stimulation declined. Zinc-free insulin, on the other hand, stimulated cell multiplication with an optimum concentration of 0.3 to 1.0 U/ml. At this concentration the maximum growth was twice that obtained with zinc-stabilized insulin. Results demonstrate that growth inhibition caused by zinc limits the concentration of zinc-stabilized insulin, which can be used in serum-free, defined culture media. This work was supported by the Division of Cancer Cause and Prevention, National Cancer Institute, DHHS Grant No. CA-28279 to Webber.  相似文献   
99.
Summary Zinc efflux from human red blood cells is largely brought about by a saturable mechanism that depends upon extracellular Ca2+ ions. It has aV max of about 35 mol/1013 cells hr, aK m for external Ca2+ of 1×10–4 m, and aK m for internal Zn2+ of 1×10–9 m. External Zn2+ inhibits with aK 0.5 of 3×10–6 m. Sr2+ is a substitute for external Ca2+, but changes in monovalent anions or cations have little effect on the Zn2+ efflux mechanism. It is unaffected by most inhibitors of red cell transport systems, although amiloride and D-600 (methoxyverapamil, a Ca2+ channel blocker) are weakly inhibitory. The transport is capable of bringing about the net efflux of Zn2+, against an electrochemical gradient, provided Ca2+ is present externally. This suggests it may be a Zn2+:Ca2+ exchange, which would be able to catalyze the uphill movement of Zn2+ at the expense of an inward Ca2+ gradient, which is it self maintained by the Ca2+ pump.  相似文献   
100.
A method of enzyme release and aqueous two-phase extraction is described for the separation of penicillin acylase from Escherichia coli cells. Butyl acetate, 12% (v/v), treatment combined with freeze-thawing gives up to 70% enzyme release. For polyethylene glycol (PEG) + phosphate two-phase extraction systems the enzyme purity and yield were rather low. Modified PEG, including PEG-ampicillin, PEG-aniline, PEG-phosphate, and PEG-trimethylamine, were synthesized and used in aqueous two-phase systems; PEG-trimethylamine is the most satisfactory. A system containing 12% (w/w) PEG4000, 8% (w/w) of which is PEG-trimethylamine, with 0.7M potasium phosphate at pH 7.2, resulted in the enzyme selective partition being greatly enhanced by charge directed effects. Possible mechanisms for the separation process are discussed. (c) 1992 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号