首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3452篇
  免费   871篇
  国内免费   110篇
  4433篇
  2024年   71篇
  2023年   45篇
  2022年   42篇
  2021年   46篇
  2020年   296篇
  2019年   315篇
  2018年   302篇
  2017年   226篇
  2016年   207篇
  2015年   190篇
  2014年   169篇
  2013年   270篇
  2012年   128篇
  2011年   112篇
  2010年   79篇
  2009年   115篇
  2008年   102篇
  2007年   112篇
  2006年   137篇
  2005年   147篇
  2004年   124篇
  2003年   117篇
  2002年   118篇
  2001年   110篇
  2000年   82篇
  1999年   70篇
  1998年   69篇
  1997年   61篇
  1996年   62篇
  1995年   53篇
  1994年   67篇
  1993年   52篇
  1992年   44篇
  1991年   37篇
  1990年   36篇
  1989年   28篇
  1988年   30篇
  1987年   31篇
  1986年   16篇
  1985年   16篇
  1984年   14篇
  1983年   11篇
  1982年   22篇
  1981年   12篇
  1980年   20篇
  1979年   9篇
  1978年   2篇
  1977年   5篇
  1975年   1篇
  1973年   3篇
排序方式: 共有4433条查询结果,搜索用时 15 毫秒
101.
It is estimated that up to 10% of proteins in eukaryotes require zinc for their function. Although the majority of these proteins are located in the nucleus and cytosol, a small subset is secreted from cells or is located within an intracellular compartment. As many of these compartmentalized metalloproteins fold to their native state and bind their zinc cofactor inside an organelle, cells require mechanisms to maintain supply of zinc to these compartments even under conditions of zinc deficiency. At the same time, intracellular compartments can also be the site for storing zinc ions, which then can be mobilized when needed. In this review, we highlight insight that has been obtained from yeast models about how zinc homeostasis is maintained in the secretory pathway and vacuole.  相似文献   
102.
During the differentiation of the male gamete, there is a massive remodeling in the shape and architecture of all the cells of the seminiferous epithelium. The cytoskeleton, as well as many associated proteins with it, plays a pivotal role in this process. The testis is particularly susceptible to environmental pollutant, which can lead to injury and impairment of normal spermatozoa production. Cadmium (Cd) is one of the major chemical environmental toxicants in economically developed countries. Food and cigarettes are the main sources of exposure to this element. Here, the protective role of zinc (Zn) to prevent the testicular toxicity in male adult rats after prenatal and during lactation exposure to Cd has been assessed. Altered testicular histology at the interstitial and germinal levels was found, whereas Zn supply completely corrected Cd toxicity. Moreover, the effects of these metals on the testicular expression and localization of the protease prolyl endopeptidase (PREP) were evaluated. Interestingly, the results showed an increase of PREP messenger RNA and protein. Data were corroborated by immunofluorescence. This study raises the possibility of using PREP as a new fertility marker.  相似文献   
103.
104.
The agarases were purified for the first time an using aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and phosphate salt. The three extracellular, alkaline agarases produced by Pseudomonas aeruginosa AG LSL-11 were efficiently extracted into the top PEG-rich layer. The influencing factors on the partition of agarases—molecular weight of the PEG, system pH, system temperature, and NaCl concentration—were investigated. All the factors were found to have a significant effect on the partition of agarases except NaCl. The optimal ATPS parameters for the partitioning and purification of agarases were found to be 12% PEG 600 and 11.9% (w/w) phosphate salt at pH 8.0 and 4°C. All three agarases were concentrated in the top PEG phase with 6.19-fold purity and 71.21% recovery. The ATPS was found to be more convenient and economical than the conventional ion-exchange chromatography (IEC) method for extraction of three agarases and could be significantly employed for the purification of agarases from fermentation broth.  相似文献   
105.
A recent study investigates the in vitro DNA binding behavior of PRDM9, a zinc finger protein involved in the localization of recombination hotspots in mammals.Please see related research article: http://genomebiology.com/2013/14/4/R35  相似文献   
106.
The BTB-ZF (broad-complex, tramtrack and bric-à-brac - zinc finger) proteins are encoded by at least 49 genes in mouse and man and commonly serve as sequence-specific silencers of gene expression. This review will focus on the known physiological functions of mammalian BTB-ZF proteins, which include essential roles in the development of the immune system. We discuss their function in terminally differentiated lymphocytes and the progenitors that give rise to them, their action in hematopoietic malignancy and roles beyond the immune system.  相似文献   
107.
108.
Layered sodium titanium oxide, Na2Ti3O7, is synthesized by a solid‐state reaction method as a potential anode for sodium‐ion batteries. Through optimization of the electrolyte and binder, the microsized Na2Ti3O7 electrode delivers a reversible capacity of 188 mA h g?1 in 1 M NaFSI/PC electrolyte at a current rate of 0.1C in a voltage range of 0.0–3.0 V, with sodium alginate as binder. The average Na storage voltage plateau is found at ca. 0.3 V vs. Na+/Na, in good agreement with a first‐principles prediction of 0.35 V. The Na storage properties in Na2Ti3O7 are investigated from thermodynamic and kinetic aspects. By reducing particle size, the nanosized Na2Ti3O7 exhibits much higher capacity, but still with unsatisfied cyclic properties. The solid‐state interphase layer on Na2Ti3O7 electrode is analyzed. A zero‐current overpotential related to thermodynamic factors is observed for both nano‐ and microsized Na2Ti3O7. The electronic structure, Na+ ion transport and conductivity are investigated by the combination of first‐principles calculation and electrochemical characterizations. On the basis of the vacancy‐hopping mechanism, a quasi‐3D energy favorable trajectory is proposed for Na2Ti3O7. The Na+ ions diffuse between the TiO6 octahedron layers with pretty low activation energy of 0.186 eV.  相似文献   
109.
Organic redox compounds are emerging electrode materials for rechargeable lithium batteries. However, their electrically insulating nature plagues efficient charge transport within the electroactive bulk. Alternative to the popular solution of elaborating nanocomposite materials, herein we report on a molecular‐level engineering strategy towards high‐power organic electrode materials with multi‐electron reactions. Systematic comparisons of anthraquinone analogues incorporating fused heteroaromatic structures as cathode materials in rechargeable lithium batteries reveal that the judicious incorporation of heteroaromatics improves the cell performance in terms of specific gravimetric capacity, working potential, rate capability, and cyclability. Combination studies with morphological observation, electrochemical impedance characterization, and theoretical modeling provide insight into the advantage of heteroaromatic building blocks. In particular, benzofuro[5,6‐b]furan‐4,8‐dione ( BFFD ) bearing furan moeities shows a reversible capacity of 181 mAh g?1 when charged/discharged at 100C, corresponding to a power density of 29.8 kW kg?1. These results have pointed to a general design route of high‐rate organic electrode materials by rational functionalization of redox compounds with appropriate heteroaromatic units as versatile structural tools.  相似文献   
110.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号