首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   26篇
  国内免费   16篇
  2023年   4篇
  2022年   8篇
  2021年   4篇
  2020年   7篇
  2019年   13篇
  2018年   10篇
  2017年   6篇
  2016年   12篇
  2015年   9篇
  2014年   23篇
  2013年   19篇
  2012年   17篇
  2011年   18篇
  2010年   10篇
  2009年   16篇
  2008年   14篇
  2007年   12篇
  2006年   17篇
  2005年   19篇
  2004年   7篇
  2003年   9篇
  2002年   3篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
31.
测定了大耳猬血清及尿中多种无机离子和尿素氮等指标,并应用免疫组织化学方法观察了AQP1、AQP2在肾脏的表达.大耳猬血清钠、氯含量较高;而尿液中以钾、钠、氯及尿素氮含量较高.尿液中主要离子浓度高于血清,较为浓缩,尿素氮、钾排泄能力较强.AQP1免疫反应阳性表达于近曲小管上皮和髓袢细段,AQP2主要表达于集合管上皮细胞.因此,AQP1、AQP2可能在大耳猬肾脏水重吸收及尿液浓缩过程中具有重要作用.  相似文献   
32.
The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1α was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI.  相似文献   
33.
Aquaporins (AQP) have important solute transport functions in many tissues including the epididymal efferent ducts (ED) and in the liver. We investigated the effect of neonatal exposure to diethylstilbestrol (DES) on AQP9 expressions in the ED and in the liver of rats. DES was administered from day 2 to day 20 postnatally at a dose of 4,8 microg/day, and AQP9 protein and mRNA were measured by immunoblotting and real-time PCR, respectively, along with immunohistochemistry. DES caused hepatic downregulation of AQP9 at both the protein and mRNA level; however, decreased AQP9 labeling was only observed in the periportal zone. In the ED, AQP9 protein expression was increased in the DES-treated animals by 300% that could be ascribed to a widening of the ED lumen, whereas no difference was observed in AQP9 mRNA expression. Immunohistochemical findings revealed that AQP9 expression was confined to the epithelial cells of the ED. In conclusion, neonatal DES exposure appears to upregulate AQP9 channels in the ED in male rats, whereas a downregulation in the hepatic expression was observed, particularly in the periacinous area.  相似文献   
34.
Expression and localization of members of the aquaporin (AQP) family (AQP1, 2, 3, 4, and 5) in the kidney of the musk shrew (Suncus murinus) was examined by immunohistochemistry. AQP1 was expressed in the proximal tubules and in the thin limb of the loops of Henle. AQP1 was the only water channel expressed in the proximal nephron examined, indicating that AQP1 may be an independent water transporter in the proximal nephron. AQP2 and AQP5 were localized to the apical cytoplasm of the cortical to medullary collecting duct (CD) cells and AQP3 and AQP4 were localized to the basal aspect of the cortical to medullary CD cells. AQP3 expression was weaker in the cortical cells compared with the medullary cells, whereas AQP4 was strongly positive throughout the CD. These indicate that the CD is the main water reabsorption segment of the nephron and is regulated by AQPs. Indeed, apical water transport of CD cells of the musk shrew may be controlled by both AQP2 and AQP5. The characteristic expression pattern of the AQPs in this animal provides a novel animal model for elucidating the regulation of water reabsorption by AQPs in the mammalian kidney.  相似文献   
35.
The physiological response to drought was measured in two common bean varieties with contrastive susceptibility to drought stress. A subtractive cDNA library was constructed from the two cultivars, Phaseolus vulgaris'Pinto Villa' (tolerant) and 'Carioca' (susceptible). 18 cDNAs displayed protein-coding genes associated with drought, cold and oxidative stress, signal transduction, plant defense, chloroplast function and unknown function. A cDNA coding for an aquaporin (AQP) was selected for further analyses. The open reading frames (ORFs) of AQPs from 'Pinto Villa' and 'Carioca' were compared and despite their similarity, accumulated differentially in the plant organs, as demonstrated by Northern blot and in situ hybridization. A phylogenetic analysis of the deduced amino acid sequence with other AQPs suggested a tonoplast-located protein. Under drought conditions, the levels of AQP mRNA from the susceptible cultivar decreased to undetectable levels; by contrast, 'Pinto Villa' mRNA was present and restricted the phloem tissue. This would allow 'Pinto Villa' to maintain vascular tissue functions under drought stress.  相似文献   
36.
Background information. Mercurials inhibit AQPs (aquaporins), and site‐directed mutagenesis has identified Cys189 as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury‐insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys189 of AQP1. Indeed, the osmotic water permeability (Pf) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His‐tagged rAPR4 (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+‐nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. Results. The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped‐flow apparatus. Surprisingly, the Pf of AQP4 proteoliposomes was significantly decreased by 5 μM HgCl2 within 30 s, and this effect was completely reversed by 2‐mercaptoethanol. The dose‐ and time‐dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site‐directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys178, which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. Conclusions. Our results suggest that mercury inhibits the Pf of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   
37.
Background information. The results of water permeability measurements suggest the presence of an AQP (aquaporin) in the membrane of the CV (contractile vacuole) in Amoeba proteus [Nishihara, Shimmen and Sonobe ( 2004 ) Cell Struct. Funct. 29 , 85–90]. Results. In the present study, we cloned an AQP gene from A. proteus [ApAQP (A. proteus AQP)] that encodes a 295‐amino‐acid protein. The protein has six putative TMs (transmembrane domains) and two NPA (Asn‐Pro‐Ala) motifs, which are conserved among various AQPs and are thought to be involved in the formation of water channels that span the lipid bilayer. Using Xenopus oocytes, we have demonstrated that the ApAQP protein product can function as a water channel. Immunofluorescence microscopy with anti‐ApAQP antibody revealed that ApAQP is detected on the CV membrane and on the vesicles around the CV. The presence of V‐ATPase (vacuolar H+‐ATPase) on the vesicle membrane around the CV was also detected. Conclusions. Our data on ApAQP allow us to provide the first informed explanation of the high water permeability of the CV membrane in amoeba. Moreover, the results suggest that vesicles possessing V‐ATPase are involved in generating an osmotic gradient. Based on our findings, we propose a new hypothesis for the mechanism of CV function.  相似文献   
38.
Aquaporins and plant water balance   总被引:4,自引:0,他引:4  
The impact of aquaporin function on plant water balance is discussed. The significance of these proteins for root water uptake, water conductance in the xylem, including embolism refilling and the role of plant aquaporins in leaf physiology, is described. Emphasis is placed on certain aspects of water stress reactions and the correlation of aquaporins to abscisic acid as well as on the relation of water and CO2 permeability in leaves.  相似文献   
39.
  1. Download : Download high-res image (205KB)
  2. Download : Download full-size image
  相似文献   
40.
Aquaporin‐1 (AQP1) is a proangiogenic water channel protein promoting endothelial cell migration. We previously reported that AQP1 silencing by RNA interference reduces angiogenesis‐dependent primary tumour growth in a mouse model of melanoma. In this study, we tested the hypothesis that AQP1 inhibition also affects animal survival and lung nodule formation. Melanoma was induced by injecting B16F10 cells into the back of C57BL6J mice. Intratumoural injection of AQP1 siRNA and CTRL siRNA was performed 10 days after tumour cell implantation. Lung nodule formation was analysed after the death of the mice. Western blot was used to quantify HIF‐1α, caspase‐3 (CASP3) and metalloproteinase‐2 (MMP2) protein levels. We found that AQP1 knock‐down (KD) strongly inhibited metastatic lung nodule formation. Moreover, AQP1 siRNA‐treated mice showed a twofold survival advantage compared to mice receiving CTRL siRNAs. The reduced AQP1‐dependent tumour angiogenesis caused a hypoxic condition, evaluated by HIF‐1α significant increase, in turn causing an increased level of apoptosis in AQP1 KD tumours, assessed by CASP3 quantification and DNA fragmentation. Importantly, a decreased level of MMP2 after AQP1 KD indicated a decreased activity against extracellular matrix associated with reduced vascularization and metastatic formation. In conclusion, these findings highlight an additional role for AQP1 as an important determinant of tumour dissemination by facilitating tumour cell extravasation and metastatic formation. This study adds knowledge on the role played by AQP1 in tumour biology and supports the view of AQP1 as a potential drug target for cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号