首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   26篇
  国内免费   16篇
  2023年   4篇
  2022年   7篇
  2021年   4篇
  2020年   7篇
  2019年   13篇
  2018年   10篇
  2017年   6篇
  2016年   12篇
  2015年   9篇
  2014年   23篇
  2013年   19篇
  2012年   17篇
  2011年   18篇
  2010年   10篇
  2009年   16篇
  2008年   14篇
  2007年   12篇
  2006年   17篇
  2005年   19篇
  2004年   7篇
  2003年   9篇
  2002年   3篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
排序方式: 共有280条查询结果,搜索用时 46 毫秒
151.
152.
In crucifers, the ability of the stigma to differentially modulate hydration of pollen grains, depending on whether the pollen is recognized to be compatible or incompatible, represents a crucial stage in pollination. Our recent analysis of the mod mutation of Brassica, which results in a breakdown of the self-incompatibility response, led to the isolation of a gene linked to the MOD locus which is expressed at low levels in mod mutants. The gene is predicted to encode a plasma membrane-localized aquaporin-like protein and has been designated MIP-MOD. We utilized reporter gene analysis to demonstrate that the MIP-MOD promoter is active in Brassica papillar cells as well as in some vegetative tissues. The encoded protein is also likely to be plasma membrane-localized based on the observation that all plasma membrane-intrinsic aquaporin-like proteins in Brassica leaves are enriched in plasma membrane fractions. The MIP-MOD protein results in a low but measurable enhancement in osmotic water permeability of Xenopus oocytes and hence represents a functional aquaporin. The results are consistent with the notion that MIP-MOD is involved in the regulation of water transport across the stigma epidermal cell membrane.  相似文献   
153.
Dordas  Christos  Brown  Patrick H. 《Plant and Soil》2001,235(1):95-103
Boron (B) is taken up by plant roots as undissociated boric acid which is a non-electrolyte of similar size to urea and other non-electrolytes. In animal systems, non-electrolytes are transported across biological membranes through aquaporins or through non-aquaporin channels. In artificial lipids boric acid is known to diffuse directly through the lipid bilayer at a rate that is determined by lipid composition. A possible role for channel proteins in in-vitro B uptake is suggested by recent work in which B uptake into isolated membrane vesicles was inhibited by channel blockers and by demonstration that the expression of the plant channel protein PIP1 in Xenopus oocytes increases boric acid uptake by 30%. This study examines whether B transport is a channel-mediated process in intact plants. In the presence of the channel inhibitors HgCl2, phloretin, and DIDS, B uptake by squash plants was reduced by 40–90% by HgCl2 (as HgCl2 varied from 50 M to 1 mM), 44% by phloretin (250 M) and 58% by DIDS (250 M). The effect of Hg ions on B uptake was reversed by 2-mercaptoethanol. The addition of other non-electrolytes in size ranges similar to boric acid inhibited B uptake to various degrees. Addition of urea resulted in 54% decrease in B uptake, while, acetamide, formamide, thiourea and glycerol inhibited uptake by 50, 35, 53 and 44%, respectively. The effect of HgCl2 on B uptake was greater at high B concentrations than at low B concentrations. These data and information from in-vivo studies suggest two possible mechanisms of B uptake: passive diffusion through lipid bilayers and channel-mediated transport.  相似文献   
154.
155.
The aquaporin family of channels was defined based on the inhibition of water transport by mercurial compounds. Despite the important role of mercurials, little is known about the structural changes involved upon mercury binding leading to channel inhibition. To elucidate the mechanism we designed a mutant, T183C, of aquaporin Z (AqpZ) patterned after the known mercury-sensitive site of aquaporin 1 (AQP1) and determined the X-ray crystal structures of the unbound and mercury blocked states. Superposition of the two structures shows no conformational rearrangement upon mercury binding. In the blocked structure, there are two mercury sites, one bound to Cys183 and occluding the pore, and a second, also bound to the same cysteine but found buried in an interstitial cavity. To test the mechanism of blockade we designed a different mutant, L170C, to produce a more effective mercury block at the pore site. In a dose-response inhibition study, this mutant was 20 times more sensitive to mercury than wild-type AqpZ and four times more sensitive than T183C. The X-ray structure of L170C shows four mercury atoms at, or near, the pore site defined in the T183C structure and no structural change upon mercury binding. Thus, we elucidate a steric inhibition mechanism for this important class of channels by mercury.  相似文献   
156.
In glial cells, inwardly rectifying K+ channels (Kir) control extracellular [K+]o homeostasis by uptake of K+ from the extracellular space and release of K+ into the microvasculature. Kir channels were also recently implicated in K+-associated water influx and cell swelling. We studied the time-dependent expression and functional implication of the glial Kir4.1 channel for astroglial swelling in a spinal cord edema model. In this CNS region, Kir4.1 is expressed on astrocytes from the second postnatal week on and co-localizes with aquaporin 4 (AQP4). Swelling of individual astrocytes in response to osmotic stress and to pharmacological Kir blockade were analyzed by time-lapse-two-photon laser-scanning microscopy in situ . Application of 30% hypotonic solution induced astroglial soma swelling whereas no swelling was observed on astroglial processes or endfeet. Co-application of hypotonic solution and Ba2+, a Kir channel blocker, induced prominent swelling of astroglial processes. In Kir4.1−/− mice, however, somatic as well as process swelling was observed upon application of 30% hypotonic solutions. No additional effect was provoked upon co-application with Ba2+. Our experiments show that Kir channels prevent glial process swelling under osmotic stress. The underlying Kir channel subunit that controls glial process swelling is Kir4.1, whereas changes of the glial soma are not substantially related to Kir4.1.  相似文献   
157.
Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment.  相似文献   
158.
水孔蛋白的抑制剂HgCl2可明显抑制壳梭孢菌素(FC)和微丝骨架的解聚剂细胞松弛素D(CD)对蚕豆保卫细胞原生质体膨胀的诱导作用,而对微丝骨架的稳定剂鬼笔环肽(phalloidin)的抑制作用影响不明显。这表明水孔蛋白可能介导了FC和微丝骨架对气孔运动的调节。  相似文献   
159.
Transcriptional regulation of aquaporin 3 by insulin   总被引:2,自引:0,他引:2  
  相似文献   
160.
Aquaporin‐4 (AQP4), the main water‐selective membrane transport protein in the brain, is localized to the astrocyte plasma membrane. Following the establishment of a 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced Parkinson's disease (PD) model, AQP4‐deficient (AQP4?/?) mice displayed significantly stronger microglial inflammatory responses and remarkably greater losses of tyrosine hydroxylase (TH+)‐positive neurons than did wild‐type AQP4 (AQP4+/+) controls. Microglia are the most important immune cells that mediate immune inflammation in PD. However, recently, few studies have reported why AQP4 deficiency results in more severe hypermicrogliosis and neuronal damage after MPTP treatment. In this study, transforming growth factor‐β1 (TGF‐β1), a key suppressive cytokine in PD onset and development, failed to increase in the midbrain and peripheral blood of AQP4?/? mice after MPTP treatment. Furthermore, the lower level of TGF‐β1 in AQP4?/? mice partially resulted from impairment of its generation by astrocytes; reduced TGF‐β1 may partially contribute to the uncontrolled microglial inflammatory responses and subsequent severe loss of TH+ neurons in AQP4?/? mice after MPTP treatment. Our study provides not only a better understanding of both aetiological and pathogenical factors implicated in the neurodegenerative mechanism of PD but also a possible approach to developing new treatments for PD via intervention in AQP4‐mediated immune regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号