首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113450篇
  免费   6955篇
  国内免费   8317篇
  2024年   333篇
  2023年   1738篇
  2022年   3074篇
  2021年   4129篇
  2020年   3035篇
  2019年   3528篇
  2018年   2990篇
  2017年   2601篇
  2016年   3215篇
  2015年   5335篇
  2014年   8866篇
  2013年   9241篇
  2012年   6538篇
  2011年   7523篇
  2010年   5491篇
  2009年   5767篇
  2008年   5844篇
  2007年   6162篇
  2006年   4694篇
  2005年   4122篇
  2004年   3089篇
  2003年   2634篇
  2002年   2379篇
  2001年   1805篇
  2000年   1618篇
  1999年   1588篇
  1998年   1433篇
  1997年   1313篇
  1996年   1271篇
  1995年   1275篇
  1994年   1156篇
  1993年   1135篇
  1992年   1076篇
  1991年   949篇
  1990年   856篇
  1989年   833篇
  1988年   777篇
  1987年   668篇
  1986年   584篇
  1985年   834篇
  1984年   1107篇
  1983年   705篇
  1982年   979篇
  1981年   881篇
  1980年   669篇
  1979年   632篇
  1978年   398篇
  1977年   403篇
  1976年   352篇
  1973年   254篇
排序方式: 共有10000条查询结果,搜索用时 980 毫秒
101.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   
102.
Human PrimPol is a recently discovered bifunctional enzyme that displays DNA template-directed primase and polymerase activities. PrimPol has been implicated in nuclear and mitochondrial DNA replication fork progression and restart as well as DNA lesion bypass. Published evidence suggests that PrimPol is a Mn2+-dependent enzyme as it shows significantly improved primase and polymerase activities when binding Mn2+, rather than Mg2+, as a divalent metal ion cofactor. Consistently, our fluorescence anisotropy assays determined that PrimPol binds to a primer/template DNA substrate with affinities of 29 and 979 nM in the presence of Mn2+ and Mg2+, respectively. Our pre-steady-state kinetic analysis revealed that PrimPol incorporates correct dNTPs with 100-fold higher efficiency with Mn2+ than with Mg2+. Notably, the substitution fidelity of PrimPol in the presence of Mn2+ was determined to be in the range of 3.4 × 10−2 to 3.8 × 10−1, indicating that PrimPol is an error-prone polymerase. Furthermore, we kinetically determined the sugar selectivity of PrimPol to be 57–1800 with Mn2+ and 150–4500 with Mg2+, and found that PrimPol was able to incorporate the triphosphates of two anticancer drugs (cytarabine and gemcitabine), but not two antiviral drugs (emtricitabine and lamivudine).  相似文献   
103.
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.  相似文献   
104.
Under stress integrated germination test (SIGT), seeds undergo osmo-saline stresses, which enable to detect differences in vigour of long-term stored seeds with high germination percentage (G%). The quality of Brassica villosa subsp. drepanensis seeds stored in a genebank (at ? 20°C for 16 years) was compared with seeds at harvest by standard germination tests (GT), SIGT and cytogenetic analysis. No differences were detected in G% and mean germination time under GT. Conversely, SIGT performed with NaCl ? 0.9 MPa osmotic potential did not influence G% at harvest but reduced that of stored seeds, SIGT at ? 1.4 MPa reduced G% of both. Cytogenetic analysis showed reduction of mitotic index, appearance of chromosomal aberrations and smaller nucleoli in stored seeds compared with harvest seeds germinated in water. SIGT at ? 0.9 MPa had no effect on mitotic index, but increased chromosome aberrations and nucleoli number. SIGT at ? 1.4 MPa inhibited G% of harvest and stored seeds, reduced mitoses in harvest and completely prevented it in stored seeds. The results indicate that GT does not faithfully reflect the quality of stored seeds, with misinterpretation of their vigour, whereas SIGT and cytogenetical parameters are sensitive, reliable and inexpensive methods for early prediction of genetic erosion in germplasm banks.  相似文献   
105.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
106.
The experimental study of the relationship between biodiversity and ecosystem function has mainly addressed the effect of species and number of functional groups. In theory, this approach has mainly focused on how extinction affects function, whereas dispersal limitation of ecosystem function has been rarely discussed. A handful of seed introduction experiments, as well as numerous observations of the effects of long‐distance dispersal of alien species, indicate that ecosystem function may be strongly determined by dispersal limitation at the local, regional and/or global scales. We suggest that it is time to replace biodiversity manipulation experiments, based on random draw of species, with those addressing realistic scenarios of either extinction or dispersal. Experiments disentangling the dispersal limitation of ecosystem function should have to take into account the probability of arrival. The latter is defined as the probability that a propagule of a particular species will arrive at a particular community. Arrival probability depends on the dispersal ability and the number of propagules of a species, the distance a species needs to travel, and the permeability of the matrix landscape. Current databases, in particular those in northwestern and central Europe now enable robust estimation of arrival probability in plant communities. We suggest a general hypothesis claiming that dispersal limitation according to arrival probability will have ecosystem‐level effects different from those arising due to random arrival. This hypothesis may be rendered more region‐, landscape‐ or ecosystem‐specific by estimating arrival probabilities for different background conditions.  相似文献   
107.
The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.  相似文献   
108.
Markovska  Y.K.  Dimitrov  D.S. 《Photosynthetica》2001,39(2):191-195
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant.  相似文献   
109.
110.
Body size and area‐incidence relationships: is there a general pattern?   总被引:1,自引:0,他引:1  
Aim This paper tests firstly for the existence of a general relationship between body size of terrestrial animals and their incidence across habitat patches of increasing size, and secondly for differences in this relationship between insects and vertebrates. Location The analysis was based on the occupancy pattern of 50 species from 15 different landscapes in a variety of ecosystems ranging from Central European grassland to Asian tropical forest. Methods The area‐occupancy relationship was described by incidence functions that were calculated using logistic regression. A correlation analysis between body size of the species and the patch area referring to the two given points of the incidence function was performed. In order to test for an effect of taxon (insects vs. vertebrates), an analysis of covariance was conducted. Results In all species, the incidence was found to increase with increasing patch area. The macroecological analysis showed a significant relationship between the incidence in habitat patches and the body size of terrestrial animals. The area requirement was found to increase linearly with increasing body size on a log‐log scale. This relationship did not differ significantly between insects and vertebrates. Conclusions The approach highlighted in this paper is to associate incidence functions with body size. The results suggest that body size is a general but rather rough predictor for the area requirements of animals. The relationship seems valid for a wide range of body sizes of terrestrial animals. However, further studies including isolation of habitats as well as additional species traits into the macroecological analysis of incidence functions are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号